1.
Rangaswami, J, Bhalla, V, Blair, JEA, et al Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2019;139:e840-e878.
Google Scholar |
Crossref |
Medline2.
McCullough, PA. Cardiorenal syndromes. World J Cardiol. 2011;3:1.
Google Scholar |
Crossref |
Medline3.
Di Lullo, L, Bellasi, A, Barbera, V, et al Pathophysiology of the cardio-renal syndromes types 1–5: an uptodate. Indian Heart J. 2017;69:255-265.
Google Scholar |
Crossref |
Medline4.
Ardekani, AM, Naeini, MM. The role of microRNAs in human diseases. Avicenna J Med Biotechnol. 2010;2:161-179.
Google Scholar |
Medline5.
O’Brien, J, Hayder, H, Zayed, Y, Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.
Google Scholar |
Crossref |
Medline6.
Dai, C, Zhang, Y, Xu, Z, Jin, M. MicroRNA-122-5p inhibits cell proliferation, migration and invasion by targeting CCNG1 in pancreatic ductal adenocarcinoma. Cancer Cell Int. 2020;20:98.
Google Scholar |
Crossref |
Medline7.
LaPierre, MP, Stoffel, M. MicroRNAs as stress regulators in pancreatic beta cells and diabetes. Mol Metab. 2017;6:1010-1023.
Google Scholar |
Crossref |
Medline8.
Li, Y, Kowdley, KV. MicroRNAs in common human diseases. Geno Proteomic Bioinform. 2012;10:246-253.
Google Scholar |
Crossref |
Medline9.
Mukhadi, S, Hull, R, Mbita, Z, Dlamini, Z. The role of MicroRNAs in kidney disease. Non-Coding RNA. 2015;1:192-221.
Google Scholar |
Crossref |
Medline10.
House, AA, Haapio, M, Lassus, J, Bellomo, R, Ronco, C. Pharmacological management of cardiorenal syndromes. Int J Nephrol. 2011;2011:630809.
Google Scholar |
Crossref |
Medline11.
Wang, Y, Liang, Y, Zhao, W, et al Circulating miRNA-21 as a diagnostic biomarker in elderly patients with type 2 cardiorenal syndrome. Sci Rep. 2020;10:4894.
Google Scholar |
Crossref |
Medline12.
Huang, C-K, Bär, C, Thum, T. miR-21, mediator, and potential therapeutic target in the cardiorenal syndrome. Front Pharmacol. 2020;11:726.
Google Scholar |
Crossref |
Medline13.
Pogribny, IP. MicroRNAs as biomarkers for clinical studies. Exp Biol Med (Maywood). 2018;243:283-290.
Google Scholar |
SAGE Journals |
ISI14.
Clough, E, Barrett, T. The gene expression omnibus database. In: Mathé, E, Davis, S (eds) Statistical genomics, vol. 1418. New York, NY: Springer; 2016:93-110.
Google Scholar15.
Wan, G, Ji, L, Xia, W, Cheng, L, Zhang, Y. Bioinformatics identification of potential candidate blood indicators for doxorubicin‑induced heart failure. Exp Ther Med. 2018;16:2534-2544.
Google Scholar |
Medline16.
Fan, Y, Siklenka, K, Arora, SK, Ribeiro, P, Kimmins, S, Xia, J. miRNet—dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 2016;44:W135-W141.
Google Scholar |
Crossref17.
You, G, Zu, B, Wang, B, Fu, Q, Li, F. Identification of miRNA–mRNA–TFs regulatory network and crucial pathways involved in tetralogy of fallot. Front Genet. 2020;11:552.
Google Scholar |
Crossref |
Medline18.
Chin, C-H, Chen, S-H, Wu, H-H, Ho, C-W, Ko, M-T, Lin, CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8:S11.
Google Scholar |
Crossref |
Medline19.
Vlachos, IS, Zagganas, K, Paraskevopoulou, MD, et al DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43:W460-W466.
Google Scholar |
Crossref20.
Heinemann, FG, Tolkach, Y, Deng, M, et al Serum miR-122-5p and miR-206 expression: non-invasive prognostic biomarkers for renal cell carcinoma. Clin Epigenetics. 2018;10:11.
Google Scholar |
Crossref |
Medline21.
Ding, S, Huang, H, Xu, Y, Zhu, H, Zhong, C. MiR-222 in cardiovascular diseases: physiology and pathology. Biomed Res Int. 2017;2017:4962426.
Google Scholar |
Crossref |
Medline22.
Xu, X, Kriegel, AJ, Liu, Y, et al Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int. 2012;82:1167-1175.
Google Scholar |
Crossref |
Medline |
ISI23.
Sun, IO, Lerman, LO. Urinary microRNA in kidney disease: utility and roles. Am J Physiol-Ren Physiol. 2019;316:F785-F793.
Google Scholar |
Crossref24.
Wang, G, Kwan Lai, FM, Chow, KM, Li, PK, Szeto, CC. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis Markers. 2011;30:171-179.
Google Scholar |
Crossref |
Medline25.
Lin, X, Zhan, JK, Wang, YJ, et al Function, role, and clinical application of MicroRNAs in vascular aging. Biomed Res Int. 2016;2016:6021394.
Google Scholar |
Crossref |
Medline26.
van Rooij, E, Sutherland, LB, Liu, N, et al A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci. 2006;103:18255-18260.
Google Scholar |
Crossref |
Medline |
ISI27.
Mellis, D, Caporali, A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans. 2018;46:11-21.
Google Scholar |
Crossref |
Medline28.
Chen, L-J, Xu, R, Yu, H-M, Chang, Q, Zhong, JC. The ACE2/apelin signaling, microRNAs, and hypertension. Int J Hypertens. 2015;2015:896861.
Google Scholar |
Crossref |
Medline29.
Li, L, Mao, D, Li, C, Li, M. miR-145-5p Inhibits vascular smooth muscle cells (VSMCs) proliferation and migration by dysregulating the transforming growth factor-b signaling cascade. Med Sci Monit. 2018;24:4894-4904.
Google Scholar |
Crossref |
Medline30.
Boettger, T, Beetz, N, Kostin, S, et al Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 2009;119:2634-2647.
Google Scholar |
Crossref |
Medline |
ISI31.
Ulbing, M, Kirsch, AH, Leber, B, et al MicroRNAs 223-3p and 93-5p in patients with chronic kidney disease before and after renal transplantation. Bone. 2017;95:115-123.
Google Scholar |
Crossref |
Medline32.
Mizushima, W, Sadoshima, J. BAG3 plays a central role in proteostasis in the heart. J Clin Invest. 2017;127:2900-2903.
Google Scholar |
Crossref |
Medline33.
Baker, MA, Wang, F, Liu, Y, et al MiR-192-5p in the kidney protects against the development of hypertension. Hypertension. 2019;73:399-406.
Google Scholar |
Crossref |
Medline34.
Long, B, Gan, T-Y, Zhang, R-C, Zhang, YH. miR-23a regulates cardiomyocyte apoptosis by targeting manganese superoxide dismutase. Mol Cells. 2017;40:542-549.
Google Scholar |
Crossref |
Medline
Comments (0)