Severe Persistent Pain and Inflammatory Biomarkers in Sickle Cell Disease: An Exploratory Study

Antwi-Boasiako, C., Campbell, A. (2018). Low nitric oxide level is implicated in sickle cell disease and its complications in Ghana. Vascular Health and Risk Management, 14, 199–204.
Google Scholar | Crossref | Medline Antwi-Boasiako, C., Donkor, E., Sey, F., Dzudzor, B., Dankwah, G., Otu, K., Doku, A., Dale, C., Ekem, I. (2018). Levels of soluble endothelium adhesion molecules and complications among sickle cell disease patients in Ghana. Diseases (Basel, Switzerland), 6(2), 29.
Google Scholar Balta, S. (2021). Endothelial dysfunction and inflammatory markers of vascular disease. Current Vascular Pharmacology, 19(3), 243–249.
Google Scholar | Crossref | Medline Campbell, C. M., Carroll, C. P., Kiley, K., Han, D., Haywood, C., Lanzkron, S., Swedberg, L., Edwards, R. R., Page, G. G., Haythornthwaite, J. A. (2016). Quantitative sensory testing and pain-evoked cytokine reactivity: Ccomparison of patients with sickle cell disease to healthy matched controls. Pain, 157(4), 949–956.
Google Scholar | Crossref | Medline Conran, N., Belcher, J. D. (2018). Inflammation in sickle cell disease. Clinical Hemorheology & Microcirculation, 68(2-3), 263–299.
Google Scholar | Crossref | Medline Conran, N., Franco-Penteado, C. F., Costa, F. F. (2009). Newer aspects of the pathophysiology of sickle cell disease vaso-occlusion. Hemoglobin, 33(1), 1–16.
Google Scholar | Crossref | Medline Cyr, A. R., Huckaby, L. V., Shiva, S. S., Zuckerbraun, B. S. (2020). Nitric oxide and endothelial dysfunction. Critical Care Clinics, 36(2), 307–321.
Google Scholar | Crossref | Medline Dampier, C., Ely, B., Brodecki, D., O’Neal, P. (2002). Characteristics of pain managed at home in children and adolescents with sickle cell disease by using diary self-reports. Journal of Pain, 3(6), 461–470.
Google Scholar | Crossref | Medline Dampier, C., Palermo, T. M., Darbari, D. S., Hassell, K., Smith, W., Zempsky, W. (2017). AAPT diagnostic criteria for chronic sickle cell disease pain. Journal of Pain, 18(5), 490–498.
Google Scholar | Crossref | Medline De Caterina, R., Libby, P., Peng, H. B., Thannickal, V. J., Rajavashisth, T. B., Gimbrone, M. A., Shin, W. S., Liao, J. K. (1995). Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. Journal of Clinical Investigation, 96(1), 60–68.
Google Scholar | Crossref | Medline DiMartino, L. D., Baumann, A. A., Hsu, L. L., Kanter, J., Gordeuk, V. R., Glassberg, J., Treadwell, M. J., Melvin, C. L., Telfair, J., Klesges, L. M., King, A., Wun, T., Shah, N., Gibson, R. W., Hankins, J. S. (2018). The sickle cell disease implementation consortium: Translating evidence-based guidelines into practice for sickle cell disease. American Journal of Hematology, 93(12), E391–e395.
Google Scholar | Crossref | Medline Francis, R. B., Haywood, L. J. (1992). Elevated immunoreactive tumor necrosis factor and interleukin-1 in sickle cell disease. Journal of National Medical Association, 84(7), 611–615.
Google Scholar | Medline Glassberg, J. A., Linton, E. A., Burson, K., Hendershot, T., Telfair, J., Kanter, J., Gordeuk, V. R., King, A. A., Melvin, C. L., Shah, N., Hankins, J. S., Epié, A. Y., Richardson, L. D. (2020). Publication of data collection forms from NHLBI funded sickle cell disease implementation consortium registry. Orphanet Journal of Rare Disease, 15(1), 178.
Google Scholar | Crossref | Medline Graido-Gonzalez, E., Doherty, J. C., Bergreen, E. W., Organ, G., Telfer, M., McMillen, M. A. (1998). Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis. Blood, 92(7), 2551–2555.
Google Scholar | Crossref | Medline Gupta, K., Jahagirdar, O., Gupta, K. (2018). APS sickle cell disease conference mini-review: Targeting pain at its source in sickle cell disease. American Journal of Physiology, 315, R104–R112.
Google Scholar | Crossref Han, J., Zhou, J., Saraf, S. L., Gordeuk, V. R., Calip, G. S. (2018). Characterization of opioid use in sickle cell disease. Pharmacoepidemiology & Drug Safety, 27(5), 479–486.
Google Scholar | Crossref | Medline Harjunpää, H., Llort Asens, M., Guenther, C., Fagerholm, S. (2019). Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Frontiers in Immunology, 10(1078), 1–24.
Google Scholar | Medline Hibbert, J. M., Hsu, L. L., Bhathena, S. J., Irune, I., Sarfo, B., Creary, M. S., Gee, B. E., Mohamed, A. I., Buchanan, I. D., Al-Mahmoud, A., Stiles, J. K. (2005). Proinflammatory cytokines and the hypermetabolism of children with sickle cell disease. Experimental Biology & Medicine, 230(1), 68–74.
Google Scholar | SAGE Journals | ISI Hoppe, C., Jacob, E., Styles, L., Kuypers, F., Larkin, S., Vichinsky, E. (2017, May). Simvastatin reduces vaso-occlusive pain in sickle cell anaemia: A pilot efficacy trial. British Journal of Haematology, 177(4), 620–629.
Google Scholar | Crossref | Medline Huh, Y., Ji, R. R., Chen, G. (2017). Neuroinflammation, bone marrow stem cells, and chronic pain. Frontiers in Immunology, 8, 1014.
Google Scholar | Crossref | Medline Ji, R. R., Nackley, A., Huh, Y., Terrando, N., Maixner, W. (2018). Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology, 129(2), 343–366.
Google Scholar | Crossref | Medline Keller, S., Yang, M., Treadwell, M. J., Hassell, K. L. (2017). Sensitivity of alternative measures of functioning and wellbeing for adults with sickle cell disease: Comparison of PROMIS(R) to ASCQ-Me. Health & Quality Life Outcomes, 15(1), 117.
Google Scholar | Crossref | Medline Kiguchi, N., Kobayashi, Y., Kishioka, S. (2012). Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Current Opinion Pharmacology, 12(1), 55–61.
Google Scholar | Crossref | Medline Kraychete, D. C., Sakata, R. K., Issy, A. M., Bacellar, O., Jesus, R. S., Carvalho, E. M. (2009). Proinflammatory cytokines in patients with neuropathic pain treated with Tramadol. Brazilian Journal of Anesthesiology, 59(3), 297–303.
Google Scholar | Crossref Lanzkron, S., Little, J., Field, J., Shows, J. R., Wang, H., Seufert, R., Brooks, J., Varadhan, R., Haywood, C., Saheed, M., Huang, C. Y., Griffin, B., Frymark, S., Piehet, A., Robertson, D., Proudford, M., Kincaid, A., Green, C., Burgess, L., Wallace, M., Segal, J. (2018). Increased acute care utilization in a prospective cohort of adults with sickle cell disease. Blood Advances, 2(18), 2412–2417.
Google Scholar | Crossref | Medline Mack, A. K., Kato, G. J. (2006). Sickle cell disease and nitric oxide: A paradigm shift? International Journal of Biochemistry & Cell Biology, 38(8), 1237–1243.
Google Scholar | Crossref | Medline Miyagi, T., Yamaguchi, K. (2007). 3.17—Sialic acids. In Kamerling, H. (Ed.), Comprehensive glycoscience (pp. 297–323). Elsevier.
Google Scholar | Crossref Morris, C. R., Kuypers, F. A., Larkin, S., Vichinsky, E. P., Styles, L. A. (2000). Patterns of arginine and nitric oxide in patients with sickle cell disease with vaso-occlusive crisis and acute chest syndrome. Journal of Pediatric Hematology & Oncology, 22(6), 515–520.
Google Scholar | Crossref | Medline National Heart, Blood, & Lung Institute . (2014). Evidence-based management of sickle cell disease: Expert panel report. https://www.nhlbi.nih.gov/health-topics/evidence-based-management-sickle-cell-disease
Google Scholar Odegaard, A. O., Jacobs, D. R., Sanchez, O. A., Goff, D. C., Reiner, A. P., Gross, M. D. (2016). Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes. Cardiovascular Diabetology, 15, 1–12.
Google Scholar | Crossref | Medline Odievre, M. H., Verger, E., Silva-Pinto, A. C., Elion, J. (2011). Pathophysiological insights in sickle cell disease. Indian Journal of Medical Research, 134, 532–537.
Google Scholar | Medline Page, A., Liles, W. (2013). Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence, 4(6), 507–516.
Google Scholar | Crossref | Medline Pathare, A., Al Kindi, S., Alnaqdy, A. A., Daar, S., Knox-Macaulay, H., Dennison, D. (2004). Cytokine profile of sickle cell disease in Oman. American Journal of Hematology, 77(4), 323–328.
Google Scholar | Crossref | Medline Pober, J. S., Sessa, W. C. (2007). Evolving functions of endothelial cells in inflammation. Nature Reviews Immunology, 7(10), 803–815.
Google Scholar | Crossref | Medline | ISI Proença-Ferreira, R., Brugnerotto, A., Garrido, V. T., Dominical, V., Vital, D., Ribeiro, M., dos Santos, M., Traina, F., Olalla-Saad, S., Costa, F., Conran, N. (2014). Endothelial activation by platelets from sickle cell anemia patients. PLoS One, 9(2), e89012–e89012.
Google Scholar | Crossref | Medline Qari, M. H., Dier, U., Mousa, S. A. (2012). Biomarkers of inflammation, growth factor, and coagulation activation in patients with sickle cell disease. Clinical & Applied Thrombosis/Hemostasis, 18(2), 195–200.
Google Scholar | SAGE Journals | ISI Ramesh, G., MacLean, A., Philipp, M. (2013). Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators of Inflammation, 2013, 480739. https://doi.org/10.1155/2013/480739
Google Scholar Ramsay, Z., Bartlett, R., Ali, A., Grant, J., Gordon-Strachan, G., Asnani, M. (2021). Sickle cell disease and pain: Is it all vaso-occlusive crises? Clinical Journal of Pain. Advance online publication. https://doi.org/10.1097/AJP.0000000000000949
Google Scholar | Crossref | Medline Slade, G. D., Conrad, M. S., Diatchenko, L., Rashid, N. U., Zhong, S., Smith, S., Rhodes, J., Medvedev, A., Makarov, S., Maixner, W., Nackley, A. G. (2011). Cytokine biomarkers and chronic pain: Association of genes, transcription, and circulating proteins with temporomandibular disorders and widespread palpation tenderness. Pain, 152(12), 2802–2812.
Google Scholar | Crossref | Medline | ISI Smith, W. R., Penberthy, L. T., Bovbjerg, V. E., McClish, D. K., Roberts, J. D., Dahman, B., Aisiku, I. P., Levenson, J. L., Roseff, S. D. (2008). Daily assessment of pain in adults with sickle cell disease. Annals of Internal Medicine, 148(2), 94–101.
Google Scholar | Crossref | Medline Sturgill, J., McGee, E., Menzies, V. (2014). Unique cytokine signature in the plasma of patients with fibromyalgia. Journal of Immunology Research, 2014, 938576.
Google Scholar | Crossref | Medline Sundd, P., Gladwin, M. T., Novelli, E. M. (2019). Pathophysiology of sickle cell disease. Annual Review of Pathology, 14, 263–292.
Google Scholar | Crossref | Medline Telen, M. J. (2007). Role of adhesion molecules and vascular endothelium in the pathogenesis of sickle cell disease. Hematology ASH Education Program, 2007, 84–90.
Google Scholar | Crossref Teodorczyk-Injeyan, J., McGregor, M., Triano, J., Injeyan, S. (2018). Elevated production of nociceptive CC chemokines and sE-selectin in patients with low back pain and the effects of spinal manipulation: A nonrandomized clinical trial. Clinical Journal of Pain, 34(1), 68–75.
Google Scholar | Crossref | Medline Tran, H., Gupta, M., Gupta, K. (2017). Targeting novel mechanisms of pain in sickle cell disease. Blood, 130(22), 2377–2385.
Google Scholar | Crossref | Medline Wautier, J., Wautier, M. (2004). Erythrocytes and platelet adhesion to endothelium are mediated by specialized molecules. Clinical Hemorheology & Microcirculation, 30, 181–184.
Google Scholar | Medline Wilkie, D. J., Molokie, R., Boyd-Seal, D., Suarez, M. L., Kim, Y. O., Zong, S., Wittert, H., Zhao, Z., Saunthararajah, Y., Wang, Z. J. (2010, Jan). Patient-reported outcomes: Descriptors of nociceptive and neuropathic pain and barriers to effective pain management in adult outpatients with sickle cell disease. Journal of the National Medical Association, 102(1), 18–27.
Google Scholar | Crossref | Medline Zhang, C. (2008). The role of inflammatory cytokines in endothelial dysfunction. Basic Research in Cardiology, 103(5), 398–406.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif