Ahmed, S. F., Keir, L., McNeilly, J., Galloway, P., O’Toole, S., Wallace, A. M. (2010). The concordance between serum anti-Mullerian hormone and testosterone concentrations depends on duration of HCG stimulation in boys undergoing investigation of gonadal function. Clinical Endocrinology, 72(6), 814–819.
https://doi.org/10.1111/j.1365-2265.2009.03724.x Google Scholar
Alexander, G. M., Saenz, J. (2011). Postnatal testosterone levels and temperament in early infancy. Archives of Sexual Behavior, 40(6), 1287–1292.
https://doi.org/10.1007/s10508-010-9701-5 Google Scholar
Ankarberg-Lindgren, C., Norjavaara, E. (2015). Sensitive RIA measures testosterone concentrations in prepubertal and pubertal children comparable to tandem mass spectrometry. Scandinavian Journal of Clinical & Laboratory Investigation, 75(4), 341–344.
https://doi.org/10.3109/00365513.2014.942694 Google Scholar
Avidime, O. M., Avidime, S., Olorunshola, K. V., Dikko, A. A. U. (2011). Anogenital distance and umbilical cord testosterone level in newborns in Zaria, Northern Nigeria. Nigerian Journal of Physiological Sciences, 26(1), 23–28.
Google Scholar |
Medline
Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., Kurzius-Spencer, M., Zahorodny, W., Rosenberg, C. R., White, T., Durkin, M. S., Imm, P., Nikolaou, L., Yeargin-Allsopp, M., Lee, L.-C., Harrington, R., Lopez, M., Fitzgerald, R. T., Hewitt, A., Bowling, N. F. (2018). Prevalence of autism spectrum disorder among children aged 8 years-Autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveillance Summaries, 67(6), 1–23.
https://doi.org/10.15585/mmwr.ss6706a1 Google Scholar
Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in Cognitive Sciences, 6(6), 248–254.
https://doi.org/10.1016/s1364-6613(02)01904-6 Google Scholar
Baron-Cohen, S. (2009). Autism: The empathizing-systemizing (E-S) theory. Annals of the New York Academy of Sciences, 1156, 68–80.
https://doi.org/10.1111/j.1749-6632.2009.04467.x Google Scholar
Becker, M., Oehler, K., Partsch, C.-J., Ulmen, J., Schmutzler, R., Cammann, H., Hesse, V. (2015). Hormonal ‘minipuberty’ influences the somatic development of boys but not of girls up to the age of 6 years. Clinical Endocrinology, 83(5), 694–701.
https://doi.org/10.1111/cen.12827 Google Scholar
Büttler, R. M., Bagci, E., Brand, H. S., den Heijer, M., Blankenstein, M. A., Heijboer, A. C. (2018). Testosterone, androstenedione, cortisol and cortisone levels in human unstimulated, stimulated and parotid saliva. Steroids, 138, 26–34.
https://doi.org/10.1016/j.steroids.2018.05.013 Google Scholar
Büttler, R. M., Peper, J. S., Crone, E. A., Lentjes, E. G. W., Blankenstein, M. A., Heijboer, A. C. (2016). Reference values for salivary testosterone in adolescent boys and girls determined using isotope-dilution liquid-chromatography tandem mass spectrometry (ID-LC-MS/MS). Clinical Chimica Acta, 456, 15–18.
https://doi.org/10.1016/j.cca.2016.02.015 Google Scholar
Cao, J., Sonila, M., Roper, S. M., Ali, M., Devaraj, S. (2018). Evaluation of a multiplex liquid chromatography-tandem mass spectrometry method for congenital adrenal hyperplasia in pediatric patients. Clinical Mass Spectrometry, 9, 18–22.
Google Scholar |
Crossref
Centers for Disease Control and Prevention . (2018). Reproductive health: Maternal and infant health.
https://www.cdc.gov/reproductivehealth/maternalinfanthealth/index.html Google Scholar
Cho, J., Carlo, W., Su, X., McCormick, K. (2012). Associations between salivary testosterone and cortisol levels and neonatal health and growth outcomes. Early Human Development, 88(10), 789–795.
https://doi.org/10.1016/j.earlhumdev.2012.05.002 Google Scholar
Cho, J., Chien, L-C., Holditch-Davis, D. (2021). Associations between hormonal biomarkers and preterm infant health and development during the first 2 years after birth. Biological Research for Nursing, 23(2), 188–197.
https://doi.org/10.1177/1099800420942893 Google Scholar
Cho, J., Holditch-Davis, D., Su, X., Phillips, V., Biasini, F., Carlo, W. (2017). Associations between hormonal biomarkers and cognitive, motor, and language developmental status in very-low-birthweight infants. Nursing Research, 66(5), 350–358.
https://doi.org/10.1097/NNR.0000000000000228 Google Scholar
Contreras, M., Raisingani, M., Chandler, D. W., Curtin, W. D., Barillas, J., Brar, P. C., Prasad, K., Shah, B., David, R. (2017). Salivary testosterone during the minipuberty of infancy. Hormone Research in Paediatrics, 87(2), 111–115.
https://doi.org/10.1159/000454862 Google Scholar
Critical Appraisal Skills Programme . (2018). CASP (Cohort Study) checklist. Microsoft Word—CASP Cohort Study Checklist 2018_DRAFT.docx (casp-uk.net)
Google Scholar
de Jong, M., Rotteveel, J., Heijboer, A. C., Cranendonk, A., Twisk, J. W. R., van Weissenbruch, M. M. (2012). Urine gonadotropin and testosterone levels in male very-low-birthweight infants. Hormone Research in Paediatrics, 78(3), 173–179.
https://doi.org/10.1159/000342860 Google Scholar
Dhayat, N. A., Frey, A. C., Frey, B. M., d’Uscio, C. H., Vogt, B., Rousson, V., Dick, B., Flück, C. E. (2015). Estimation of reference curves for the urinary steroid metabolome in the first year of life in healthy children: Tracing the complexity of human postnatal steroidogenesis. Journal of Steroid Biochemistry & Molecular Biology, 154, 226–236.
https://doi.org/10.1016/j.jsbmb.2015.07.024 Google Scholar
El-Baz, F., Hamza, R. T., Ayad, M. S. E., Mahmoud, N. H. (2014). Hyperandrogenemia in male autistic children and adolescents: Relation to disease severity. International Journal of Adolescent Medicine and Health, 26(1), 79–84.
https://doi.org/10.1515/ijamh-2012-0116 Google Scholar
Fanelli, F., Belluomo, I., Di lallo, V. D., Cuomo, G., De Lasio, R., Baccini, M. (2011). Serum steroid profiling by isotopic dilution-liquid chromatography-mass spectrometry: Comparison with current immunoassays and reference intervals in healthy adults. Steroids, 76(3), 244–253.
https://doi.org/10.1016/j.steroids.2010.11.005 Google Scholar
Fanelli, F., Gambineri, A., Mezzullo, M., Vicennati, V., Pelusi, C., Pasquali, R., Pagotto, U. (2013). Revisiting hyper- and hypo-androgenism by tandem mass spectrometry. Reviews in Endocrine and Metabolic Disorders, 14(2),185–205.
https://doi.org/10.1007/s11154-013-9243-y Google Scholar
Fang, X., Wang, L., Wu, C., Shi, H., Zhou, Z., Montgomery, S., Cao, Y. (2017). Sex hormones, gonadotropins, and sex hormone-binding globulin in infants fed breast milk, cow milk formula, or soy formula. Scientific Reports, 7(1), 4332.
https://doi.org/10.1038/s41598-017-04610-y Google Scholar
Garagorri, J. M., Rodriguez, G., Lario-Elboj, A. J., Olivares, J. L., Lario-Muňoz, A., Orden, I. (2008). Reference levels for 17-hydroxyprogesterone, 11-desoxycortisol, cortisol, testosterone, dehydroepiandrosterone sulfate and androstenedione in infants from birth to six months of age. European Journal of Pediatrics, 167(6), 647–653.
https://doi.org/10.1007/s00431-007-0565-1 Google Scholar
Geschwind, N. G. A. M. (1987). Cerebral lateralization: Biological mechanisms, associations, and pathology. MIT Press.
Google Scholar
Gissler, M., Jarvelin, M. R., Louhiala, P., Hemminki, E. (1999). Boys have more health problems in childhood than girls: Follow-up of the 1987 Finnish birth cohort. Acta Paediatrica, 88(3), 310–314.
https://doi.org/10.1080/08035259950170088 Google Scholar
Griggs, K. M., Hrelic, D. A., Williams, N., McEwen-Campbell, M., Cypher, R. (2020). Preterm labor and birth: A clinical review. MCN The American Journal of Maternal and Child Nursing, 45(6), 328–337.
https://doi.org/10.1097/NMC.0000000000000656 Google Scholar
Gunnala, V., Guo, R., Minutti, C., Durazo-Arvizu, R., Laporte, C., Mathews, H., Kliethermis, S., Bhatia, R. (2015). Measurement of salivary cortisol level for the diagnosis of critical illness-related corticosteroid insufficiency in children. Pediatric Critical Care Medicine, 16(4), e101–106.
https://doi.org/10.1097/PCC.0000000000000361 Google Scholar
Hamer, H. M., Finken, M. J. J., van Herwaarden, A. E., du Toit, T., Swart, A. C., Heijboer, A. C. (2018). Falsely elevated plasma testosterone concentrations in neonates: Importance of LC-MS/MS measurements. Clinical Chemistry Lab Medicine, 56(6), e141–e143.
https://doi.org/10.1515/cclm-2017-1028 Google Scholar
Hintz, S. R., Kendrick, D. E., Vohr, B. R., Kenneth Poole, W., Higgins, R. D., NICHD Neonatal Research Network. (2006). Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. Acta Paediatrica, 95(10), 1239–1248.
https://doi.org/10.1080/08035250600599727 Google Scholar
Huang, X., Xu, X., Dai, Y., Cheng, Z., Zheng, X., Huo, X. (2020). Association of prenatal exposure to PAHs with anti-Müllerian hormone (AMH) levels and birth outcomes of newborns. The Science of the Total Environment, 723, 138009.
https://doi.org/10.1016/j.scitotenv.2020 Google Scholar
Jain, V. G., Goyal, V., Chowdhary, V., Swarup, N., Singh, R. J., Singal, A., Shekhawat, P. (2018). Anogenital distance is determined during early gestation in humans. Human Reproduction, 33(9), 1619–1627.
https://doi.org/10.1093/humrep/dey265 Google Scholar
Kallak, T. K., Hellgren, C., Skalkidou, A., Sandelin-Francke, L., Ubhayasekhera, K., Bergquist, J., Axelsson, O., Comasco, E., Campbell, R. E., Poromaa, S. (2017). Maternal and female fetal testosterone levels are associated with maternal age and gestational weight gain. European Journal of Endocrinology, 77(4), 379–388.
https://doi.org/10.1530/EJE-17-0207 Google Scholar
Kanakis, G. A., Tsametis, C. P., Goulis, D. G. (2019). Measuring testosterone in women and men. Maturitas, 125, 41–44.
https://doi.org/10.1016/j.maturitas.2019.04.203 Google Scholar
Kareem, A. J., Owa, J. A., Elusiyan, J. B. E. (2020). Estimations of total serum testosterone levels in Nigerian term neonates at birth using anogenital distance measurements. Journal of Pediatric Endocrinology and Metabolism, 33(5), 631–638.
https://doi.org/10.1515/jpem-2019-0516 Google Scholar
Kim, J. Y., Lee, Y. A., Lim, Y.-H., Lee, K., Kim, B.-N., Kim, J. I., Hong, Y.-C., Yang, S. W., Song, J., Shin, C. H. (2020). Changes in adrenal androgens and steroidogenic enzyme activities from ages 2, 4, to 6 years: A prospective cohort study. Journal of Clinical Endocrinology and Metabolism, 105(10), 3265–3272.
https://doi.org/10.1210/clinem/dgaa498 Google Scholar
Kiviranta, P., Kuiri-Hänninen, T., Saari, A., Lamidi, M.-L., Dunkel, L., Sankilampi, U. (2016). Transient postnatal gonadal activation and growth velocity in infancy. Pediatrics, 138(1), e20153561.
https://doi.org/10.1542/peds.2015-3561 Google Scholar
Knickmeyer, R. C., Woolson, S., Hamer, R. M., Konneker, T., Gilmore, J. H. (2011). 2D:4D ratios in the first 2 years of life: Stability and relation to testosterone exposure and sensitivity. Hormones and Behavior, 60(3), 256–263.
https://doi.org/10.1016/j.yhbeh.2011.05.009 Google Scholar
Kuiri-Hänninen, T., Seuri, R., Tyrväinen, E., Turpeinen, U., Hämäläinen, E., Stenman, U. H., Dunkel, L., Sankilampi, U. (2011). Increased activity of the hypothalamic-pituitary-testicular axis in infancy results in increased androgen action in premature boys. Journal of Clinical Endocrinology & Metabolism, 96(1), 98–105.
https://doi.org/10.1210/jc.2010-1359 Google Scholar
Kung, K. T. F., Constantinescu, M., Browne, W. V., Noorderhaven, R. M., Hines, M. (2016). No relationship between early postnatal testosterone concentrations and autistic traits in 18 to 30-months-old children. Molecular Autism, 7(15), 1–5.
https://doi.org/10.1186/s13229-016-0078-8 Google Scholar
Kushnir, M. M., Blamires, T., Rockwood, A. L., Roberts, W. L., Yue, B., Erdogan, E., Bunker, A. M., Meikle, W. (2010). Liquid chromatography-tandem mass spectrometry assay for androstenedione, dehydroepiandrosterone, and testosterone with pediatric and adult references intervals. Clinical Chemistry, 56(7), 1138–1147.
https://doi.org/10.1373/clinchem.2010.143222 Google Scholar
Kyriakopoulou, L., Yazdanpanah, M., Colantonio, D. A., Chan, M. K., Daly, C. H., Adeli, K. (2013). A sensitive and rapid mass spectrometric method for the simultaneous measurement of eight steroid hormones and CALIPER pediatric reference intervals. Clinical Biochemistry, 46, 642–651.
https://doi.org/10.1016/j.clinbiochem.2013.01.002 Google Scholar
Law, M., Stewart, D., Pollock, N., Letts, L., Bosch, J., Westmorland, M. (1998). Critical review form—Quantitative studies. Critical Review Form—Quantitative Studies (unisa.edu.au)
Google Scholar
Minatoya, M., Sasaki, S., Araki, A., Miyashita, C., Itoh, S., Yamamoto, J., Matsumura, T., Mitsui, T., Moriya, K., Cho, K., Morioka, K., Minakami, H., Shinohara, N., Kishi, R. (2017). Cord blood bisphenol A levels and reproductive and thyroid hormone levels of neonates. Epidemiology, (Suppl 1), S3–S9.
https://doi.org/10.1097/EDE.0000000000000716 Google Scholar
Mouritsen, A., Soeborg, T., Johannsen, T. H., Aksglaede, L., Sorensen, K., Hagen, C. P., Mieritz, M. G., Frederiksen, H., Andersson, A.-M, Juul, A. (2014). Longitudinal changes in circulating testosterone levels determined by LC-MS/MS and by a commercially available radioimmunoassay in healthy girls and boys during the pubertal transition. Hormone Research in Paediatrics, 82(1), 12–17.
https://doi.org/10.1159/000358560 Google Scholar
Olisov, D., Lee, K., Jun, S.-H., Song, S. H., Kim, J. H., Lee, Y. A., Shin, C. H., Song, J. (2019). Measurement of serum steroid profiles by HPLC-tandem mass spectrometry. Journal of Chromatography B, 1117, 1–9.
https://doi.org/10.1016/j.jchromb.2019.04.001 Google Scholar
Pappas, A., Adams-Chapman, I., Shankaran, S., McDonald, S. A., Stoll, B. J., Laptook, A. R., Carlo, W. A., van Meurs, K. P., Hintz, S. R., Carlson, M. D., Brumbaugh, J. E., Walsh, M. C., Wyckoff, M. H., Das, A., Higgins, R. D. NICHD Neonatal Research Network . (2018). Neurodevelopmental and behavioral outcomes in extremely premature neonates with ventriculomegaly in the absence of periventricular intraventricular hemorrhage. JAMA Pediatrics, 172(1), 32–42.
https://doi.org/10.1001/jamapediatrics.2017.3545 Google Scholar
Saenz, J., Alexander, G. M. (2013). Postnatal testosterone levels and disorder relevant behavior in the second year of life. Biological Psychology, 94(1), 152–159.
https://doi.org/10.1016/j.biopsycho.2013.05.011 Google Scholar
Salameh, W. A., Redor-Goldman, M. M., Clarke, N. J., Reitz, R. E., Caulfield, M. P. (2010). Validation of a total testosterone assay using high-turbulence liquid chromatography tandem mass spectrometry: Total and free testosterone reference ranges. Steroids, 75, 169–175.
https://doi.org/10.1016/j.steroids.2009.11.004 Google Scholar
Shen, M., Xiang, P., Shen, R., Bu, J., Wang, M. (2009). Physiological concentrations of anabolic steroids in human hair. Forensic Science International, 184, 32–36.
https://doi.org/10.1016/j.forsciint.2008.11.014 Google Scholar
Smith, J. D., Johnson, K. A., Whittle, S., Allen, N. B., Simmons, J. G. (2019). Measurement of cortisol, dehydroepiandrosterone, and testosterone in the hair of children: Preliminary results and promising indications. Developmental Psychobiology, 61(6), 962–970.
https://doi.org/10.1002/dev.21807 Google Scholar
Trost, L. W., Mulhall, J. P. (2016). Challenges in testosterone measurement, data interpretation, and methodological appraisal of interventional trials. The Journal of Sexual Medicine, 13(7), 1029–1046.
https://doi.org/10.1016/j.jsxm.2016.04.068 Google Scholar
Turpeinen, U., Linko, S., Itkonen, O., Hamalainen, E. (2008). Determination of testosterone in serum by liquid chromatography-tandem mass spectrometry. The Scandinavian Journal of Clinical & Laboratory Investigation, 68(1), 50–57.
https://doi.org/10.1080/00365510701496496 Google Scholar
Wen, H.-J., Sie, L., Su, P.-H., Chuang, C.-J., Chen, H.-Y., Sun, C.-W., Huang, L.-H., Hsiung, C. A., Wang, S.-L. J. (2017). Prenatal and childhood exposure to phthalate diesters and sex steroid hormones in 1-, 5-, 8-, and 11-year-old children: A pilot study of the Taiwan maternal and infant cohort study. Journal of Epidemiology, 27(11), 516–523.
https://doi.org/10.1016/j.je.2016.10.009 Google Scholar
Whitehouse, A. J. O., Mattes, E., Maybery, M. T., Sawyer, M. G., Jacoby, P., Keelan, J. A., Hickey, M. (2012). Sex-specific associations between umbilical cord blood testosterone levels and language delay in early childhood. Journal of Child Psychology and Psychiatry, 53(7), 726–734.
https://doi.org/10.1111/j.1469-7610.2011.02523.x Google Scholar
Comments (0)