Aalinkeel, R., Kutscher, H. L., Singh, A., Cwiklinski, K., Khechen, N., Schwartz, S. A., Prasad, P. N., Mahajan, S. D. (2018). Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: A potential nanotherapy for Alzheimer’s disease? J Drug Target, 26, 182–193.
https://doi.org/10.1080/1061186X.2017.1354002 Google Scholar |
Crossref |
Medline Abderrazak, A., Couchie, D., Mahmood, D. F., Elhage, R., Vindis, C., Laffargue, M., Mateo, V., Buchele, B., Ayala, M. R., Gaafary, M. E., Syrovets, T., Slimane, M. N., Friguet, B., Fulop, T., Simmet, T., Hadri, K. E., Rouis, M. (2015). Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation, 131, 1061–1070.
https://doi.org/10.1161/CIRCULATIONAHA.114.013730 Google Scholar |
Crossref |
Medline |
ISI Abdullaha, M., Ali, M., Kour, D., Kumar, A., Bharate, S. B. (2020). Discovery of benzo[cd]indol-2-one and benzylidene-thiazolidine-2,4-dione as new classes of NLRP3 inflammasome inhibitors via ER-beta structure based virtual screening. Bioorg Chem, 95, 103500.
https://doi.org/10.1016/j.bioorg.2019.103500 Google Scholar |
Crossref |
Medline Abdullaha, M., Mohammed, S., Ali, M., Kumar, A., Vishwakarma, R. A., Bharate, S. B. (2019). Discovery of quinazolin-4(3 H)-ones as NLRP3 inflammasome inhibitors: Computational design, metal-free synthesis, and in vitro biological evaluation. J Org Chem, 84, 5129–5140.
https://doi.org/10.1021/acs.joc.9b00138 Google Scholar |
Crossref |
Medline Abdul-Muneer, P. M., Alikunju, S., Mishra, V., Schuetz, H., Szlachetka, A. M., Burnham, E. L., Haorah, J. (2017). Activation of NLRP3 inflammasome by cholesterol crystals in alcohol consumption induces atherosclerotic lesions. Brain Behav Immun, 62, 291–305.
https://doi.org/10.1016/j.bbi.2017.02.014 Google Scholar |
Crossref |
Medline Agarwal, S., Pethani, J. P., Shah, H. A., Vyas, V., Sasane, S., Bhavsar, H., Bandyopadhyay, D., Giri, P., Viswanathan, K., Jain, M. R., Sharma, R. (2020). Identification of a novel orally bioavailable NLRP3 inflammasome inhibitor. Bioorg Med Chem Lett, 30, 127571.
https://doi.org/10.1016/j.bmcl.2020.127571 Google Scholar |
Crossref |
Medline Agarwal, S., Sasane, S., Shah, H. A., Pethani, J. P., Deshmukh, P., Vyas, V., Iyer, P., Bhavsar, H., Viswanathan, K., Bandyopadhyay, D., Giri, P., Mahapatra, J., Chatterjee, A., Jain, M. R., Sharma, R. (2020). Discovery of N-Cyano-sulfoximineurea derivatives as potent and orally bioavailable NLRP3 inflammasome inhibitors. ACS Med Chem Lett, 11, 414–418.
https://doi.org/10.1021/acsmedchemlett.9b00433 Google Scholar |
Crossref |
Medline Ahn, J. H., Park, Y. L., Song, A. Y., Kim, W. G., Je, C. Y., Jung, D. H., Kim, Y. J., Oh, J., Cho, J. Y., Kim, D. J., Park, J. H. (2021). Water extract of artemisia scoparia Waldst. & Kitam suppresses LPS-induced cytokine production and NLRP3 inflammasome activation in macrophages and alleviates carrageenan-induced acute inflammation in mice. J Ethnopharmacol, 268, 113606.
https://doi.org/10.1016/j.jep.2020.113606 Google Scholar |
Crossref |
Medline Alishahi, M., Farzaneh, M., Ghaedrahmati, F., Nejabatdoust, A., Sarkaki, A., Khoshnam, S. E. (2019). NLRP3 inflammasome in ischemic stroke: As possible therapeutic target. Int J Stroke, 14, 574–591.
https://doi.org/10.1177/1747493019841242 Google Scholar |
SAGE Journals |
ISI Altaee, R., Gibson, C. L. (2020). Sexual dimorphism following in vitro ischemia in the response to neurosteroids and mechanisms of injury. BMC Neurosci, 21, 5.
https://doi.org/10.1186/s12868-020-0553-1 Google Scholar |
Crossref |
Medline Amin, F. M., Abdelaziz, R. R., Hamed, M. F., Nader, M. A., Shehatou, G. S. G. (2020). Dimethyl fumarate ameliorates diabetes-associated vascular complications through ROS-TXNIP-NLRP3 inflammasome pathway. Life Sci, 256, 117887.
https://doi.org/10.1016/j.lfs.2020.117887 Google Scholar |
Crossref |
Medline An, P., Xie, J., Qiu, S., Liu, Y., Wang, J., Xiu, X., Li, L., Tang, M. (2019). Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci, 232, 116599.
https://doi.org/10.1016/j.lfs.2019.116599 Google Scholar |
Crossref |
Medline Aronowski, J., Zhao, X. (2011). Molecular pathophysiology of cerebral hemorrhage: Secondary brain injury. Stroke, 42, 1781–1786.
https://doi.org/10.1161/STROKEAHA.110.596718 Google Scholar |
Crossref |
Medline |
ISI Back, T., Schuler, O. G. (2004). The natural course of lesion development in brain ischemia. Acta Neurochir Suppl, 89, 55–61.
https://doi.org/10.1007/978-3-7091-0603-7_7 Google Scholar |
Medline Badjatia, N., Rosand, J. (2005). Intracerebral hemorrhage. Neurologist, 11, 311–324.
https://doi.org/10.1097/01.nrl.0000178757.68551.26.
Google Scholar |
Crossref |
Medline |
ISI Bai, Q., Sheng, Z., Liu, Y., Zhang, R., Yong, V. W., Xue, M. (2020). Intracerebral haemorrhage: From clinical settings to animal models. Stroke Vasc Neurol, 5, 388–395.
https://doi.org/10.1136/svn-2020-000334 Google Scholar |
Crossref |
Medline Bai, R. X., Xu, Y. Y., Qin, G., Chen, Y. M., Wang, H. F., Wang, M., Du, S. Y. (2019). Repression of TXNIP-NLRP3 axis restores intestinal barrier function via inhibition of myeloperoxidase activity and oxidative stress in nonalcoholic steatohepatitis. J Cell Physiol, 234, 7524–7538.
https://doi.org/10.1002/jcp.27513 Google Scholar |
Crossref |
Medline Bauernfeind, F. G., Horvath, G., Stutz, A., Alnemri, E. S., MacDonald, K., Speert, D., Fernandes-Alnemri, T., Wu, J., Monks, B. G., Fitzgerald, K. A., Hornung, V., Latz, E. (2009). Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol, 183, 787–791.
https://doi.org/10.4049/jimmunol.0901363 Google Scholar |
Crossref |
Medline |
ISI Blamire, A. M., Anthony, D. C., Rajagopalan, B., Sibson, N. R., Perry, V. H., Styles, P. (2000). Interleukin-1beta -induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: A magnetic resonance study. The Journal of Neuroscience, 20(21), 8153–8159
Google Scholar |
Crossref |
Medline Bode, N., Grebe, A., Kerksiek, A., Lutjohann, D., Werner, N., Nickenig, G., Latz, E., Zimmer, S. (2016). Ursodeoxycholic acid impairs atherogenesis and promotes plaque regression by cholesterol crystal dissolution in mice. Biochem Biophys Res Commun, 478, 356–362.
https://doi.org/10.1016/j.bbrc.2016.07.047 Google Scholar |
Crossref |
Medline Boutin, H., LeFeuvre, R. A., Horai, R., Asano, M., Iwakura, Y., Rothwell, N. J. (2001). Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci, 21, 5528–5534
Google Scholar |
Crossref |
Medline |
ISI Butkevych, E., Lobo de Sa, F. D., Nattramilarasu, P. K., Bucker, R. (2020). Contribution of epithelial apoptosis and subepithelial immune responses in Campylobacter jejuni-Induced barrier disruption. Front Microbiol, 11, 344.
https://doi.org/10.3389/fmicb.2020.00344 Google Scholar |
Crossref |
Medline Cahill, J., Calvert, J. W., Zhang, J. H. (2006). Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab, 26, 1341–1353.
https://doi.org/10.1038/sj.jcbfm.9600283 Google Scholar |
SAGE Journals |
ISI Cai, W., Wang, J., Hu, M., Chen, X., Lu, Z., Bellanti, J. A., Zheng, S. G. (2019). All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling. J Neuroinflammation, 16, 175.
https://doi.org/10.1186/s12974-019-1557-6 Google Scholar |
Crossref |
Medline Cao, G., Jiang, N., Hu, Y., Zhang, Y., Wang, G., Yin, M., Ma, X., Zhou, K., Qi, J., Yu, B., Kou, J. (2016). Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Int J Mol Sci, 17, 1418.
https://doi.org/10.3390/ijms17091418 Google Scholar |
Crossref Cao, S., Shrestha, S., Li, J., Yu, X., Chen, J., Yan, F., Ying, G., Gu, C., Wang, L., Chen, G. (2017). Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep, 7, 2417.
https://doi.org/10.1038/s41598-017-02679-z Google Scholar |
Crossref |
Medline Carvalho, A. M., Novais, F. O., Paixao, C. S., de Oliveira, C. I., Machado, P. R. L., Carvalho, L. P., Scott, P., Carvalho, E. M. (2020). Glyburide, a NLRP3 inhibitor, decreases inflammatory response and is a candidate to reduce pathology in Leishmania braziliensis infection. J Invest Dermatol, 140, 246–249.e242.
https://doi.org/10.1016/j.jid.2019.05.025 Google Scholar |
Crossref |
Medline Caso, J. R., Moro, M. A., Lorenzo, P., Lizasoain, I., Leza, J. C. (2007). Involvement of IL-1beta in acute stress-induced worsening of cerebral ischaemia in rats. Eur Neuropsychopharmacol, 17, 600–607.
https://doi.org/10.1016/j.euroneuro.2007.02.009 Google Scholar |
Crossref |
Medline |
ISI Castillo, J., Loza, M. I., Mirelman, D., Brea, J., Blanco, M., Sobrino, T., Campos, F. (2016). A novel mechanism of neuroprotection: Blood glutamate grabber. J Cereb Blood Flow Metab, 36, 292–301.
https://doi.org/10.1177/0271678X15606721 Google Scholar |
SAGE Journals |
ISI Chen, A., Xu, Y., Yuan, J. (2018). Ginkgolide B ameliorates NLRP3 inflammasome activation after hypoxic-ischemic brain injury in the neonatal male rat. Int J Dev Neurosci, 69, 106–111.
https://doi.org/10.1016/j.ijdevneu.2018.07.004 Google Scholar |
Crossref |
Medline Chen, D., Dixon, B. J., Doycheva, D. M., Li, B., Zhang, Y., Hu, Q., He, Y., Guo, Z., Nowrangi, D., Flores, J., Filippov, V., Zhang, J. H., Tang, J. (2018). IRE1alpha inhibition decreased TXNIP/NLRP3 inflammasome activation through miR-17-5p after neonatal hypoxic-ischemic brain injury in rats. J Neuroinflammation, 15, 32.
https://doi.org/10.1186/s12974-018-1077-9 Google Scholar |
Crossref |
Medline Chen, H., He, G., Chen, Y., Zhang, X., Wu, S. (2018). Differential activation of NLRP3, AIM2, and IFI16 inflammasomes in humans with acute and chronic hepatitis B. Viral Immunol, 31, 639–645.
https://doi.org/10.1089/vim.2018.0058 Google Scholar |
Crossref |
Medline Chen, M. L., Zhu, X. H., Ran, L., Lang, H. D., Yi, L., Mi, M. T. (2017). Trimethylamine-N-Oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. Journal of the American Heart Association, 6(9), e006347.
https://doi.org/10.1161/JAHA.117.006347 Google Scholar |
Crossref |
Medline Chen, S., Luo, J., Reis, C., Manaenko, A., Zhang, J. (2017). Hydrocephalus after subarachnoid hemorrhage: Pathophysiology, diagnosis, and treatment. Biomed Res Int, 2017, 8584753.
https://doi.org/10.1155/2017/8584753 Google Scholar |
Medline Chen, S., Ma, Q., Krafft, P. R., Hu, Q., Rolland, W., II, Sherchan, P., Zhang, J., Tang, J., Zhang, J. H. (2013). P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiol Dis, 58, 296–307.
https://doi.org/10.1016/j.nbd.2013.06.011 Google Scholar |
Crossref |
Medline |
ISI Chen, Y., Li, R., Wang, Z., Hou, X., Wang, C., Ai, Y., Shi, W., Zhan, X., Wang, J. B., Xiao, X., Bai, Z., Sun, H., Xu, G. (2020). Dehydrocostus lactone inhibits NLRP3 inflammasome activation by blocking ASC oligomerization and prevents LPS-mediated inflammation in vivo. Cell Immunol, 349, 104046.
https://doi.org/10.1016/j.cellimm.2020.104046 Google Scholar |
Crossref |
Medline Chen, Z., Hu, Y., Lu, R., Ge, M., Zhang, L. (2020). MicroRNA-374a-5p inhibits neuroinflammation in neonatal hypoxic-ischemic encephalopathy via regulating NLRP3 inflammasome targeted Smad6. Life Sci, 252, 117664.
https://doi.org/10.1016/j.lfs.2020.117664 Google Scholar |
Crossref |
Medline Chen, Z., Zhang, Y., Lin, R., Meng, X., Zhao, W., Shen, W., Fan, H. (2020). Cronobacter sakazakii induces necrotizing enterocolitis by regulating NLRP3 inflammasome expression via TLR4. J Med Microbiol, 69, 748–758.
https://doi.org/10.1099/jmm.0.001181 Google Scholar |
Crossref |
Medline Cheng, L., Yin, R., Yang, S., Pan, X., Ma, A. (2018). Rs4612666 polymorphism of the NLRP3 gene is associated with the occurrence of large artery atherosclerotic ischemic strokes and microembolic signals. Biomed Res Int, 2018, 6345805.
https://doi.org/10.1155/2018/6345805 Google Scholar |
Crossref |
Medline Cheng, X., Yeung, P. K. K., Zhong, K., Zilundu, P. L. M., Zhou, L., Chung, S. K. (2019). Astrocytic endothelin-1 overexpression promotes neural progenitor cells proliferation and differentiation into astrocytes via the Jak2/Stat3 pathway after stroke. J Neuroinflammation, 16, 227.
https://doi.org/10.1186/s12974-019-1597-y Google Scholar |
Crossref |
Medline Cheng, Y., Wei, Y., Yang, W., Song, Y., Shang, H., Cai, Y., Wu, Z., Zhao, W. (2017). Cordycepin confers neuroprotection in mice models of intracerebral hemorrhage via suppressing NLRP3 inflammasome activation. Metab Brain Dis, 32, 1133–1145.
https://doi.org/10.1007/s11011-017-0003-7
Comments (0)