Dysregulation of lncRNAs in NK cells from breast cancer patients: implications for NK cell functions

Ali AK, Oh JS, Vivier E, Busslinger M, Lee S-H (2016) NK cell-specific Gata3 ablation identifies the maturation program required for bone marrow exit and control of proliferation. J Immunol Baltim Md 1950(196):1753–1767. https://doi.org/10.4049/jimmunol.1501593

Article  Google Scholar 

Andergassen D, Muckenhuber M, Bammer PC, Kulinski TM, Theussl H-C, Shimizu T, Penninger JM, Pauler FM, Hudson QJ (2019) The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes. PLoS Genet 15:e1008268. https://doi.org/10.1371/journal.pgen.1008268

Article  PubMed  PubMed Central  Google Scholar 

Atianand MK, Caffrey DR, Fitzgerald KA (2017) Immunobiology of long noncoding RNAs. Annu Rev Immunol 35:177–198. https://doi.org/10.1146/annurev-immunol-041015-055459

Article  PubMed  PubMed Central  Google Scholar 

Baytak E, Gong Q, Akman B, Yuan H, Chan WC, Küçük C (2017) Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1. Tumor Biol 39:101042831770164. https://doi.org/10.1177/1010428317701648

Article  Google Scholar 

Briercheck EL, Trotta R, Chen L, Hartlage AS, Cole JP, Cole TD, Mao C, Banerjee PP, Hsu H-T, Mace EM, Ciarlariello D, Mundy-Bosse BL, Garcia-Cao I, Scoville SD, Yu L, Pilarski R, Carson WE, Leone G, Pandolfi PP, Yu J, Orange JS, Caligiuri MA (2015) PTEN is a negative regulator of NK cell cytolytic function. J Immunol 194:1832–1840. https://doi.org/10.4049/jimmunol.1401224

Article  PubMed  PubMed Central  Google Scholar 

Caras I, Grigorescu A, Stavaru C, Radu DL, Mogos I, Szegli G, Salageanu A (2004) Evidence for immune defects in breast and lung cancer patients. Cancer Immunol Immunother 53:1146–1152. https://doi.org/10.1007/s00262-004-0556-2

Article  PubMed  PubMed Central  Google Scholar 

Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305–W311. https://doi.org/10.1093/nar/gkp427

Article  PubMed  PubMed Central  Google Scholar 

Chen L, Wang W, Cao L, Li Z, Wang X (2016) Long Non-Coding RNA CCAT1 Acts as a competing endogenous RNA to regulate cell growth and differentiation in acute myeloid leukemia. Mol Cells 39:330–336. https://doi.org/10.14348/molcells.2016.2308

Article  PubMed  PubMed Central  Google Scholar 

Chen S, Zhu H, Jounaidi Y (2024) Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 9:302. https://doi.org/10.1038/s41392-024-02005-w

Article  PubMed  PubMed Central  Google Scholar 

Chen S, Zhu J, Wang F, Guan Z, Ge Y, Yang X, Cai J (2017) LncRNAs and their role in cancer stem cells. Oncotarget 8:110685–110692. https://doi.org/10.18632/oncotarget.22161

Article  PubMed  PubMed Central  Google Scholar 

Fang P, Xiang L, Chen W, Li S, Huang S, Li J, Zhuge L, Jin L, Feng W, Chen Y, Pan C (2019) LncRNA GAS5 enhanced the killing effect of NK cell on liver cancer through regulating miR-544/RUNX3. Innate Immun 25:99–109. https://doi.org/10.1177/1753425919827632

Article  PubMed  PubMed Central  Google Scholar 

Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP (2023) PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 22:138. https://doi.org/10.1186/s12943-023-01827-6

Article  PubMed  PubMed Central  Google Scholar 

Gomez JA, Wapinski OL, Yang YW, Bureau J-F, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152:743–754. https://doi.org/10.1016/j.cell.2013.01.015

Article  PubMed  PubMed Central  Google Scholar 

He J, Xi X, Cao P, Zhou J, Liu H, Li N (2023) Long non-coding RNA GNAS-AS1 knockdown inhibits proliferation and epithelial–mesenchymal transition of lung adenocarcinoma cells via the microRNA-433-3p/Rab3A axis. Open Med 18:20230740. https://doi.org/10.1515/med-2023-0740

Article  Google Scholar 

Heward JA, Lindsay MA (2014) Long non-coding RNAs in the regulation of the immune response. Trends Immunol 35:408–419. https://doi.org/10.1016/j.it.2014.07.005

Article  PubMed  PubMed Central  Google Scholar 

Hrdlickova B, Kumar V, Kanduri K, Zhernakova DV, Tripathi S, Karjalainen J, Lund RJ, Li Y, Ullah U, Modderman R, Abdulahad W, Lähdesmäki H, Franke L, Lahesmaa R, Wijmenga C, Withoff S (2014) Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity. Genome Med 6:88. https://doi.org/10.1186/s13073-014-0088-0

Article  PubMed  PubMed Central  Google Scholar 

Huang Y, Zhang Y, Zhou Y, Chen Y, Zhu Q (2023) CDKN2B-AS1 is overexpressed in polycystic ovary syndrome and sponges miR-181a to promote granulosa cell proliferation. Anticancer Drugs 34:207–213. https://doi.org/10.1097/CAD.0000000000001405

Article  PubMed  Google Scholar 

Johnsson P, Ackley A, Vidarsdottir L, Lui W-O, Corcoran M, Grandér D, Morris KV (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–446. https://doi.org/10.1038/nsmb.2516

Article  PubMed  PubMed Central  Google Scholar 

Khameneh HJ, Fonta N, Zenobi A, Niogret C, Ventura P, Guerra C, Kwee I, Rinaldi A, Pecoraro M, Geiger R, Cavalli A, Bertoni F, Vivier E, Trumpp A, Guarda G (2023) Myc controls NK cell development, IL-15-driven expansion, and translational machinery. Life Sci Alliance 6:e202302069. https://doi.org/10.26508/lsa.202302069

Article  PubMed  PubMed Central  Google Scholar 

Khurana D, Leibson PJ (2003) Regulation of lymphocyte-mediated killing by GTP-binding proteins. J Leukoc Biol 73:333–338. https://doi.org/10.1189/jlb.0802385

Article  PubMed  Google Scholar 

Kim T, Cui R, Jeon Y-J, Lee J-H, Lee JH, Sim H, Park JK, Fadda P, Tili E, Nakanishi H, Huh M-I, Kim S-H, Cho JH, Sung BH, Peng Y, Lee TJ, Luo Z, Sun H-L, Wei H, Alder H, Oh JS, Shim KS, Ko S-B, Croce CM (2014) Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci U S A 111:4173–4178. https://doi.org/10.1073/pnas.1400350111

Article  PubMed  PubMed Central  Google Scholar 

Lee J, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21:400–404. https://doi.org/10.1038/7734

Article  PubMed  Google Scholar 

Li Y, Wang J, Yin J, Liu X, Yu M, Li T, Yan H, Wang X (2017) Chromatin state dynamics during NK cell activation. Oncotarget 8:41854–41865. https://doi.org/10.18632/oncotarget.16688

Article  PubMed  PubMed Central  Google Scholar 

Liau XL, Salvamani S, Gunasekaran B, Chellappan DK, Rhodes A, Ulaganathan V, Tiong YL (2023) CCAT 1- a pivotal oncogenic long non-coding RNA in colorectal cancer. Br J Biomed Sci 80:11103. https://doi.org/10.3389/bjbs.2023.11103

Article  PubMed  PubMed Central  Google Scholar 

Liu Z, Chen Q, Hann SS (2019) The functions and oncogenic roles of CCAT1 in human cancer. Biomed Pharmacother Biomedecine Pharmacother 115:108943. https://doi.org/10.1016/j.biopha.2019.108943

Article  Google Scholar 

Liu Z, Ma C, Tang X, Tang Q, Lou L, Yu Y, Zheng F, Wu J, Yang X, Wang W, Hann SS (2019) The reciprocal interaction between LncRNA CCAT1 and miR-375-3p contribute to the downregulation of IRF5 gene expression by solasonine in HepG2 human hepatocellular carcinoma cells. Front Oncol 9:1081. https://doi.org/10.3389/fonc.2019.01081

Article  PubMed  PubMed Central  Google Scholar 

Liu S-Q, Zhou Z-Y, Dong X, Guo L, Zhang K-J (2020) LncRNA GNAS-AS1 facilitates ER+ breast cancer cells progression by promoting M2 macrophage polarization via regulating miR-433-3p/GATA3 axis. Biosci Rep 40:BSR20200626. https://doi.org/10.1042/BSR20200626

Article  PubMed  PubMed Central  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Article  PubMed 

Comments (0)

No login
gif