World Health Organization. Obesity and overweight n.d. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 2025
Vassallo P, Driver SL, Stone NJ. Metabolic Syndrome: An Evolving Clinical Construct. Prog Cardiovasc Dis. 2016;59:172–7. https://doi.org/10.1016/j.pcad.2016.07.012.
Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023;78:1966. https://doi.org/10.1097/HEP.0000000000000520.
Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7:851–61. https://doi.org/10.1016/S2468-1253(22)00165-0.
Article PubMed CAS Google Scholar
Younossi ZM, Kalligeros M, Henry L. Epidemiology of metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol. 2024;31:S32-50. https://doi.org/10.3350/cmh.2024.0431.
Article PubMed PubMed Central Google Scholar
Lonardo A, Mantovani A, Lugari S, Targher G. Epidemiology and pathophysiology of the association between NAFLD and metabolically healthy or metabolically unhealthy obesity. Ann Hepatol. 2020;19:359–66. https://doi.org/10.1016/j.aohep.2020.03.001.
Article PubMed CAS Google Scholar
Le Garf S, Nègre V, Anty R, Gual P. Metabolic fatty liver disease in children: a growing public health problem. Biomedicines. 2021;9:1915. https://doi.org/10.3390/biomedicines9121915.
Article PubMed PubMed Central CAS Google Scholar
Samuel VT, Shulman GI. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 2018;27:22–41. https://doi.org/10.1016/j.cmet.2017.08.002.
Article PubMed CAS Google Scholar
Lallukka S, Yki-Järvinen H. Non-alcoholic fatty liver disease and risk of type 2 diabetes. Best Pract Res Clin Endocrinol Metab. 2016;30:385–95. https://doi.org/10.1016/j.beem.2016.06.006.
Article PubMed CAS Google Scholar
Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med. 2010;363:1341–50. https://doi.org/10.1056/NEJMra0912063.
Article PubMed CAS Google Scholar
Kucukoglu O, Sowa J-P, Mazzolini GD, Syn W-K, Canbay A. Hepatokines and adipokines in NASH-related hepatocellular carcinoma. J Hepatol. 2021;74:442–57. https://doi.org/10.1016/j.jhep.2020.10.030.
Article PubMed CAS Google Scholar
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2024 May;74(3):229-63. https://doi.org/10.3322/caac.21834.
Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7:1–28. https://doi.org/10.1038/s41572-020-00240-3.
Younossi Z, Stepanova M, Ong JP, Jacobson IM, Bugianesi E, Duseja A, et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol. 2019;17:748-755.e3. https://doi.org/10.1016/j.cgh.2018.05.057.
Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 2016;23:591–601. https://doi.org/10.1016/j.cmet.2016.02.005.
Article PubMed PubMed Central CAS Google Scholar
Creutzfeldt W. The incretin concept today. Diabetologia. 1979;16:75–85. https://doi.org/10.1007/BF01225454.
Article PubMed CAS Google Scholar
Přáda Brichtová E, Krupová M, Bouř P, Lindo V, Gomes dos Santos A, Jackson SE. Glucagon-like peptide 1 aggregates into low-molecular-weight oligomers off-pathway to fibrillation. Biophysical Journal 2023;122:2475–88. https://doi.org/10.1016/j.bpj.2023.04.027.
Gautier J-F, Choukem S-P, Girard J. Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. Diabetes Metab. 2008;34:S65-72. https://doi.org/10.1016/S1262-3636(08)73397-4.
Article PubMed CAS Google Scholar
Liu QK. Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. Front Endocrinol (Lausanne). 2024;15:1431292. https://doi.org/10.3389/fendo.2024.1431292.
Son JW, Lim S. Glucagon-like peptide-1 based therapies: a new horizon in obesity management. Endocrinol Metab. 2024;39:206–21. https://doi.org/10.3803/EnM.2024.1940.
Hall S, Isaacs D, Clements JN. Pharmacokinetics and Clinical Implications of Semaglutide: A New Glucagon-Like Peptide (GLP)-1 Receptor Agonist. Clin Pharmacokinet. 2018;57:1529–38. https://doi.org/10.1007/s40262-018-0668-z.
Article PubMed CAS Google Scholar
Petrova L, Andreevska K, Parvova I, Petkova V. Systematic review of the efficacy and safety of GLP-1 receptor agonists in the treatment of patients with type 2 diabetes mellitus. Pharmacia. 2024;71:1–17. https://doi.org/10.3897/pharmacia.71.e132148.
Min T, Bain SC. The role of tirzepatide, dual gip and glp-1 receptor agonist, in the management of type 2 diabetes: the surpass clinical trials. Diabetes Ther. 2021;12:143–57. https://doi.org/10.1007/s13300-020-00981-0.
Article PubMed CAS Google Scholar
Schneck K, Urva S. Population pharmacokinetics of the GIP/GLP receptor agonist tirzepatide. CPT: Pharmacometrics & Systems Pharmacology. 2024 Mar;13(3):494-503. https://doi.org/10.1002/psp4.13099.
Forzano I, Varzideh F, Avvisato R, Jankauskas SS, Mone P, Santulli G. Tirzepatide: a systematic update. Int J Mol Sci. 2022;23:14631. https://doi.org/10.3390/ijms232314631.
Article PubMed PubMed Central CAS Google Scholar
Nauck MA, D‘Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovascular Diabetology 2022;21:169. https://doi.org/10.1186/s12933-022-01604-7.
Shilleh AH, Viloria K, Broichhagen J, Campbell JE, Hodson DJ. GLP1R and GIPR expression and signaling in pancreatic alpha cells, beta cells and delta cells. Peptides. 2024;175:171179. https://doi.org/10.1016/j.peptides.2024.171179.
Article PubMed CAS Google Scholar
Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A, et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia. 2016;59:954–65. https://doi.org/10.1007/s00125-016-3874-y.
Article PubMed PubMed Central CAS Google Scholar
Almutairi M, Al Batran R, Ussher JR. Glucagon-like peptide-1 receptor action in the vasculature. Peptides. 2019;111:26–32. https://doi.org/10.1016/j.peptides.2018.09.002.
Article PubMed CAS Google Scholar
Grunddal KV, Jensen EP, Ørskov C, Andersen DB, Windeløv JA, Poulsen SS, et al. Expression Profile of the GLP-1 Receptor in the Gastrointestinal Tract and Pancreas in Adult Female Mice. Endocrinology. 2022;163:bqab216. https://doi.org/10.1210/endocr/bqab216.
Article PubMed CAS Google Scholar
Sato T, Shimizu T, Fujita H, Imai Y, Drucker DJ, Seino Y, et al. GLP-1 Receptor Signaling Differentially Modifies the Outcomes of Sterile vs Viral Pulmonary Inflammation in Male Mice. Endocrinology. 2020;161:bqaa201. https://doi.org/10.1210/endocr/bqaa201.
Article PubMed PubMed Central CAS Google Scholar
Adriaenssens A, Broichhagen J, Bray A de, Ast J, Hasib A, Jones B, et al. Hypothalamic and brainstem glucose-dependent insulinotropic polypeptide receptor neurons employ distinct mechanisms to affect feeding. JCI Insight 2023;8. https://doi.org/10.1172/jci.insight.164921.
da Silva LN, Cabaleiro A, Novoa E, Riobello C, Knerr PJ, He Y, et al. GLP-1 and GIP agonism has no direct actions in human hepatocytes or hepatic stellate cells. Cell Mol Life Sci. 2024;81:468. https://doi.org/10.1007/s00018-024-05507-6.
Comments (0)