Pandey SK, Kim KH. A review of methods for the determination of reduced sulfur compounds (RSCs) in air. Environ Sci Technol. 2009;43(9):3020–9.
Article CAS PubMed Google Scholar
Lee CL, Brimblecombe P. Anthropogenic contributions to global carbonyl sulfide, carbon disulfide and organosulfides fluxes. Earth Sci Rev. 2016;160:1–18.
Munoz R, Sivret EC, Parcsi G, Lebrero R, Wang X, Suffet IM, Stuetz RM. Monitoring techniques for odour abatement assessment. Water Res. 2010;44(18):5129–49.
Article CAS PubMed Google Scholar
Rubright SLM, Pearce LL, Peterson J. Environmental toxicology of hydrogen sulfide. Nitric Oxide. 2017;71:1–13.
Brown AS, van der Veen AM, Arrhenius K, Murugan A, Culleton LP, Ziel PR, Li JR. Sampling of gaseous sulfur-containing compounds at low concentrations with a review of best-practice methods for biogas and natural gas applications. TrAC-Trend Anal Chem. 2015;64:42–52.
Wardencki W. Problems with the determination of environmental sulphur compounds by gas chromatography. J Chromatogr A. 1998;793(1):1–19.
Lestremau F, Desauziers V, Roux JC, Fanlo JL. Development of a quantification method for the analysis of malodorous sulphur compounds in gaseous industrial effluents by solid-phase microextraction and gas chromatography–pulsed flame photometric detection. J Chromatogr A. 2003;999(1):71–80.
Article CAS PubMed Google Scholar
Murray RA. Limitations to the use of solid-phase microextraction for quantification of mixtures of volatile. Anal Chem. 2001;73(7):1646–9.
Article CAS PubMed Google Scholar
Nielsen AT, Jonsson S. Quantification of volatile sulfur compounds in complex gaseous matrices by solid-phase microextraction. J Chromatogr A. 2002;963(1):57–64.
Article CAS PubMed Google Scholar
Borrás E, Tortajada-Genaro LA, Muñoz A. Determination of reduced sulfur compounds in air samples for the monitoring of malodor caused by landfills. Talanta. 2016;148:472–7.
Kudryavtsev AS, Makas AL, Troshkov ML, Grachev MA, Pod’yachev SP. The method for on-site determination of trace concentrations of methyl mercaptan and dimethyl sulfide in air using a mobile mass spectrometer with atmospheric pressure chemical ionization, combined with a fast enrichment/separation system. Talanta. 2014;123:140–5.
Article CAS PubMed Google Scholar
Khan MAH, Whelan ME, Rhew RC. Analysis of low concentration reduced sulfur compounds (RSCs) in air: storage issues and measurement by gas chromatography with sulfur chemiluminescence detection. Talanta. 2012;88:581–6.
Article CAS PubMed Google Scholar
Ras MR, Borrull F, Marcé RM. Determination of volatile organic sulfur compounds in the air at sewage management areas by thermal desorption and gas chromatography–mass spectrometry. Talanta. 2008;74(4):562–9.
Article CAS PubMed Google Scholar
Trabue SL, Scoggin KD, Li H, Burns R, Xin H. Field sampling method for quantifying odorants in humid environments. Environ Sci Technol. 2008;42(10):3745–50.
Article CAS PubMed Google Scholar
Trabue S, Scoggin K, Mitloehner F, Li H, Burns R, Xin H. Field sampling method for quantifying volatile sulfur compounds from animal feeding operations. Atmos Environ. 2008;42(14):3332–41.
Andersen KB, Hansen MJ, Feilberg A. Minimisation of artefact formation of dimethyl disulphide during sampling and analysis of methanethiol in air using solid sorbent materials. J Chromatogr A. 2012;1245:24–31.
Article CAS PubMed Google Scholar
Pan Y, Deng FF, Fang Z, Chen HJ, Long Z, Hou XD. Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds. Chin Chem Lett. 2021;32(11):3440–5.
Ochiai N, Takino M, Daishima S, Cardin DB. Analysis of volatile sulphur compounds in breath by gas chromatography–mass spectrometry using a three-stage cryogenic trapping preconcentration system. J Chromatogr B. 2001;762(1):67–75.
Azad MAK, Ohira SI, Toda K. Single column trapping/separation and chemiluminescence detection for on-site measurement of methyl mercaptan and dimethyl sulfide. Anal Chem. 2006;78(17):6252–9.
Article CAS PubMed Google Scholar
Sánchez-González E, Mileo PG, Sagastuy-Breña M, Álvarez JR, Reynolds JE, Villarreal A, Gutiérrez-Alejandre A, Ramírez J, Balmaseda J, González-Zamora E. Highly reversible sorption of H2S and CO2 by an environmentally friendly Mg-based MOF. J Mater Chem A. 2018;6(35):16900–9.
Peralta D, Chaplais G, Simon-Masseron A, Barthelet K, Pirngruber GD. Metal–organic framework materials for desulfurization by adsorption. Energy Fuels. 2012;26(8):4953–60.
Mu MY, Zhu SP, Gao YM, Zhang N, Wang YM, Lu MH. Efficient enrichment and sensitive detection of polychlorinated biphenyls using nanoflower MIL-on-UiO as solid-phase microextraction fiber coating. Food Chem. 2024;459: 140276.
Article CAS PubMed Google Scholar
Gao YM, Tian X, Wang YM, Zhu JW, Lou XJ, Qin MJ, Lu MH, Cai ZW. Zr-based multivariate metal-organic framework for rapid extraction of sulfonamide antibiotics from water and food samples. J Hazard Mater. 2024;476: 135019.
Article CAS PubMed Google Scholar
Taheri A, Babakhani EG, Towfighi J. Methyl mercaptan removal from natural gas using MIL-53 (Al). J Nat Gas Sci Eng. 2017;38:272–82.
Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J. 2004;10(6):1373–82.
Article CAS PubMed Google Scholar
Singh N, Dalakoti S, Sharma A, Chauhan R, Murali RS, Divekar S, Dasgupta S. Shaping of MIL-53-Al and MIL-101 MOF for CO2/CH4, CO2/N2 and CH4/N2 separation. Sep Purif Technol. 2024;341: 126820.
Wang XQ, Jacobson AJ. Hydrothermal crystal growth and vernier structures of the metal benzenedicarboxylates MIL-47 and MIL-53 containing guest molecules of benzenecarboxylic acid. J Solid State Chem. 2016;236:230–5.
Finsy V, Ma L, Alaerts L, De Vos D, Baron G, Denayer J. Separation of CO2/CH4 mixtures with the MIL-53 (Al) metal–organic framework. Micropor Mesopor Mater. 2009;120(3):221–7.
Zhou MM, Wu YN, Qiao JL, Zhang J, McDonald A, Li GT, Li FT. The removal of bisphenol A from aqueous solutions by MIL-53 (Al) and mesostructured MIL-53 (Al). J Colloid Interface Sci. 2013;405:157–63.
Article CAS PubMed Google Scholar
Li J, Wu YN, Li ZH, Zhu M, Li FT. Characteristics of arsenate removal from water by metal-organic frameworks (MOFs). Water Sci Technol. 2014;70(8):1391–7.
Article CAS PubMed Google Scholar
Zárate JA, Sánchez González E, Jurado Vázquez T, Gutiérrez Alejandre A, González Zamora E, Castillo I, Maurin G, Ibarra IA. Outstanding reversible H2S capture by an Al (III)-based MOF. Chem Commun. 2019;55(21):3049–52.
Yang RT, Hernández Maldonado AJ, Yang FH. Desulfurization of transportation fuels with zeolites under ambient conditions. Science. 2003;301(5629):79–81.
Article CAS PubMed Google Scholar
Khan NA, Jun JW, Jeong JH, Jhung SH. Remarkable adsorptive performance of a metal–organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene. Chem Commun. 2011;47(4):1306–8.
Comments (0)