Determination of Volatile Sulfur Compounds by MIL-53 (Al) Preconcentration and Gas Chromatography

Pandey SK, Kim KH. A review of methods for the determination of reduced sulfur compounds (RSCs) in air. Environ Sci Technol. 2009;43(9):3020–9.

Article  CAS  PubMed  Google Scholar 

Lee CL, Brimblecombe P. Anthropogenic contributions to global carbonyl sulfide, carbon disulfide and organosulfides fluxes. Earth Sci Rev. 2016;160:1–18.

Article  CAS  Google Scholar 

Munoz R, Sivret EC, Parcsi G, Lebrero R, Wang X, Suffet IM, Stuetz RM. Monitoring techniques for odour abatement assessment. Water Res. 2010;44(18):5129–49.

Article  CAS  PubMed  Google Scholar 

Rubright SLM, Pearce LL, Peterson J. Environmental toxicology of hydrogen sulfide. Nitric Oxide. 2017;71:1–13.

Article  Google Scholar 

Brown AS, van der Veen AM, Arrhenius K, Murugan A, Culleton LP, Ziel PR, Li JR. Sampling of gaseous sulfur-containing compounds at low concentrations with a review of best-practice methods for biogas and natural gas applications. TrAC-Trend Anal Chem. 2015;64:42–52.

Article  CAS  Google Scholar 

Wardencki W. Problems with the determination of environmental sulphur compounds by gas chromatography. J Chromatogr A. 1998;793(1):1–19.

Article  CAS  Google Scholar 

Lestremau F, Desauziers V, Roux JC, Fanlo JL. Development of a quantification method for the analysis of malodorous sulphur compounds in gaseous industrial effluents by solid-phase microextraction and gas chromatography–pulsed flame photometric detection. J Chromatogr A. 2003;999(1):71–80.

Article  CAS  PubMed  Google Scholar 

Murray RA. Limitations to the use of solid-phase microextraction for quantification of mixtures of volatile. Anal Chem. 2001;73(7):1646–9.

Article  CAS  PubMed  Google Scholar 

Nielsen AT, Jonsson S. Quantification of volatile sulfur compounds in complex gaseous matrices by solid-phase microextraction. J Chromatogr A. 2002;963(1):57–64.

Article  CAS  PubMed  Google Scholar 

Borrás E, Tortajada-Genaro LA, Muñoz A. Determination of reduced sulfur compounds in air samples for the monitoring of malodor caused by landfills. Talanta. 2016;148:472–7.

Article  PubMed  Google Scholar 

Kudryavtsev AS, Makas AL, Troshkov ML, Grachev MA, Pod’yachev SP. The method for on-site determination of trace concentrations of methyl mercaptan and dimethyl sulfide in air using a mobile mass spectrometer with atmospheric pressure chemical ionization, combined with a fast enrichment/separation system. Talanta. 2014;123:140–5.

Article  CAS  PubMed  Google Scholar 

Khan MAH, Whelan ME, Rhew RC. Analysis of low concentration reduced sulfur compounds (RSCs) in air: storage issues and measurement by gas chromatography with sulfur chemiluminescence detection. Talanta. 2012;88:581–6.

Article  CAS  PubMed  Google Scholar 

Ras MR, Borrull F, Marcé RM. Determination of volatile organic sulfur compounds in the air at sewage management areas by thermal desorption and gas chromatography–mass spectrometry. Talanta. 2008;74(4):562–9.

Article  CAS  PubMed  Google Scholar 

Trabue SL, Scoggin KD, Li H, Burns R, Xin H. Field sampling method for quantifying odorants in humid environments. Environ Sci Technol. 2008;42(10):3745–50.

Article  CAS  PubMed  Google Scholar 

Trabue S, Scoggin K, Mitloehner F, Li H, Burns R, Xin H. Field sampling method for quantifying volatile sulfur compounds from animal feeding operations. Atmos Environ. 2008;42(14):3332–41.

Article  CAS  Google Scholar 

Andersen KB, Hansen MJ, Feilberg A. Minimisation of artefact formation of dimethyl disulphide during sampling and analysis of methanethiol in air using solid sorbent materials. J Chromatogr A. 2012;1245:24–31.

Article  CAS  PubMed  Google Scholar 

Pan Y, Deng FF, Fang Z, Chen HJ, Long Z, Hou XD. Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds. Chin Chem Lett. 2021;32(11):3440–5.

Article  CAS  Google Scholar 

Ochiai N, Takino M, Daishima S, Cardin DB. Analysis of volatile sulphur compounds in breath by gas chromatography–mass spectrometry using a three-stage cryogenic trapping preconcentration system. J Chromatogr B. 2001;762(1):67–75.

Article  CAS  Google Scholar 

Azad MAK, Ohira SI, Toda K. Single column trapping/separation and chemiluminescence detection for on-site measurement of methyl mercaptan and dimethyl sulfide. Anal Chem. 2006;78(17):6252–9.

Article  CAS  PubMed  Google Scholar 

Sánchez-González E, Mileo PG, Sagastuy-Breña M, Álvarez JR, Reynolds JE, Villarreal A, Gutiérrez-Alejandre A, Ramírez J, Balmaseda J, González-Zamora E. Highly reversible sorption of H2S and CO2 by an environmentally friendly Mg-based MOF. J Mater Chem A. 2018;6(35):16900–9.

Article  Google Scholar 

Peralta D, Chaplais G, Simon-Masseron A, Barthelet K, Pirngruber GD. Metal–organic framework materials for desulfurization by adsorption. Energy Fuels. 2012;26(8):4953–60.

Article  CAS  Google Scholar 

Mu MY, Zhu SP, Gao YM, Zhang N, Wang YM, Lu MH. Efficient enrichment and sensitive detection of polychlorinated biphenyls using nanoflower MIL-on-UiO as solid-phase microextraction fiber coating. Food Chem. 2024;459: 140276.

Article  CAS  PubMed  Google Scholar 

Gao YM, Tian X, Wang YM, Zhu JW, Lou XJ, Qin MJ, Lu MH, Cai ZW. Zr-based multivariate metal-organic framework for rapid extraction of sulfonamide antibiotics from water and food samples. J Hazard Mater. 2024;476: 135019.

Article  CAS  PubMed  Google Scholar 

Taheri A, Babakhani EG, Towfighi J. Methyl mercaptan removal from natural gas using MIL-53 (Al). J Nat Gas Sci Eng. 2017;38:272–82.

Article  CAS  Google Scholar 

Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J. 2004;10(6):1373–82.

Article  CAS  PubMed  Google Scholar 

Singh N, Dalakoti S, Sharma A, Chauhan R, Murali RS, Divekar S, Dasgupta S. Shaping of MIL-53-Al and MIL-101 MOF for CO2/CH4, CO2/N2 and CH4/N2 separation. Sep Purif Technol. 2024;341: 126820.

Article  CAS  Google Scholar 

Wang XQ, Jacobson AJ. Hydrothermal crystal growth and vernier structures of the metal benzenedicarboxylates MIL-47 and MIL-53 containing guest molecules of benzenecarboxylic acid. J Solid State Chem. 2016;236:230–5.

Article  CAS  Google Scholar 

Finsy V, Ma L, Alaerts L, De Vos D, Baron G, Denayer J. Separation of CO2/CH4 mixtures with the MIL-53 (Al) metal–organic framework. Micropor Mesopor Mater. 2009;120(3):221–7.

Article  CAS  Google Scholar 

Zhou MM, Wu YN, Qiao JL, Zhang J, McDonald A, Li GT, Li FT. The removal of bisphenol A from aqueous solutions by MIL-53 (Al) and mesostructured MIL-53 (Al). J Colloid Interface Sci. 2013;405:157–63.

Article  CAS  PubMed  Google Scholar 

Li J, Wu YN, Li ZH, Zhu M, Li FT. Characteristics of arsenate removal from water by metal-organic frameworks (MOFs). Water Sci Technol. 2014;70(8):1391–7.

Article  CAS  PubMed  Google Scholar 

Zárate JA, Sánchez González E, Jurado Vázquez T, Gutiérrez Alejandre A, González Zamora E, Castillo I, Maurin G, Ibarra IA. Outstanding reversible H2S capture by an Al (III)-based MOF. Chem Commun. 2019;55(21):3049–52.

Article  Google Scholar 

Yang RT, Hernández Maldonado AJ, Yang FH. Desulfurization of transportation fuels with zeolites under ambient conditions. Science. 2003;301(5629):79–81.

Article  CAS  PubMed  Google Scholar 

Khan NA, Jun JW, Jeong JH, Jhung SH. Remarkable adsorptive performance of a metal–organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene. Chem Commun. 2011;47(4):1306–8.

Article  CAS 

Comments (0)

No login
gif