Electrochemiluminescence of Hot Exciton Nanomaterial Featuring Aggregation-Induced Emission for “Signal-on” Detection of Alkaline Phosphatase

Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.

Article  CAS  PubMed  Google Scholar 

Miao WJ. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

Article  CAS  PubMed  Google Scholar 

Liu ZY, Qi WJ, Xu GB. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44:3117–42.

Article  CAS  PubMed  Google Scholar 

Lei JP, Ju HX. Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence. TrAC Trends Anal Chem. 2011;30(8):1351–9.

Article  CAS  Google Scholar 

Jia HY, Yang L, Dong X, Zhou LM, Wei Q, Ju HX. Cysteine modification of glutathione-stabilized Au nanoclusters to red-shift and enhance the electrochemiluminescence for sensitive bioanalysis. Anal Chem. 2022;94(4):2313–20.

Article  CAS  PubMed  Google Scholar 

Zhao GH, Dong X, Du Y, Zhang N, Bai GZ, Wu D, Ma HM, Wang YG, Cao W, Wei Q. Enhancing electrochemiluminescence efficiency through introducing atomically dispersed ruthenium in nickel-based metal-organic frameworks. Anal Chem. 2022;94(29):10557–66.

Article  CAS  PubMed  Google Scholar 

Kong LY, Zhao L, Liang HX, Ren X, Ma HM, Liu XJ, Fan DW, Wu D, Wei Q. Self-enhanced biosensor with luminophore-catalyst integrated strategies and ECL-RET for ultrasensitive SARS-CoV-2 N immunoassay. Sens Actuat B Chem. 2025;432: 137478.

Article  CAS  Google Scholar 

Li YJ, Cui WR, Jiang QQ, Wu Q, Liang RP, Luo QX, Qiu JD. A general design approach toward covalent organic frameworks for highly efficient electrochemiluminescence. Nat Commun. 2021;12:4735.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang ZY, Pan JB, Li Q, Zhou Y, Yang S, Xu JJ, Hua DB. Improved AIE-active probe with high sensitivity for accurate uranyl ion monitoring in the wild using portable electrochemiluminescence system for environmental applications. Adv Funct Mater. 2020;30(30):2000220.

Article  CAS  Google Scholar 

Doeven EH, Connell TU, Sinha N, Wenger OS, Francis PS. Electrochemiluminescence of a first-row d6 transition metal complex. Angew Chem Int Ed. 2024;63(21): e202319047.

Article  CAS  Google Scholar 

Liu YJ, Zhang HD, Li BX, Liu JW, Jiang DC, Liu BH, Sojic N. Single biomolecule imaging by electrochemiluminescence. J Am Chem Soc. 2021;143(43):17910–4.

Article  CAS  PubMed  Google Scholar 

Valenti G, Rampazzo E, Bonacchi S, Petrizza L, Marcaccio M, Montalti M, Prodi L, Paolucci F. Variable doping induces mechanism swapping in electrogenerated chemiluminescence of Ru(bpy)32+ core-shell silica nanoparticles. J Am Chem Soc. 2016;138(49):15935–42.

Article  CAS  PubMed  Google Scholar 

Yu SQ, Du Y, Niu XH, Li GM, Zhu D, Yu Q, Zou GZ, Ju HX. Arginine-modified black phosphorus quantum dots with dual excited states for enhanced electrochemiluminescence in bioanalysis. Nat Commun. 2022;13:7302.

Article  PubMed  PubMed Central  Google Scholar 

Li LL, Zhang ZY, Chen Y, Xu Q, Zhang JR, Chen ZX, Chen Y, Zhu JJ. Sustainable and self-enhanced electrochemiluminescent ternary suprastructures derived from CsPbBr3 perovskite quantum dots. Adv Funct Mater. 2019;29(32):1902533.

Article  Google Scholar 

Wu KQ, Zheng YJ, Chen R, Zhou ZX, Liu SQ, Shen YF, Zhang YJ. Advances in electrochemiluminescence luminophores based on small organic molecules for biosensing. Biosens Bioelectron. 2023;223: 115031.

Article  CAS  PubMed  Google Scholar 

Feng YQ, Wang NN, Ju HX. Electrochemiluminescence biosensing and bioimaging with nanomaterials as emitters. Sci China Chem. 2022;65(12):2417–36.

Article  CAS  Google Scholar 

Feng YQ, Wang NN, Ju HX. Highly efficient electrochemiluminescence of cyanovinylene-contained polymer dots in aqueous medium and its application in imaging analysis. Anal Chem. 2018;90(2):1202–8.

Article  CAS  PubMed  Google Scholar 

Wang NN, Gao H, Li YZ, Li GM, Chen WW, Jin ZC, Lei JP, Wei Q, Ju HX. Dual intramolecular electron transfer for in situ coreactant-embedded electrochemiluminescence microimaging of membrane protein. Angew Chem Int Ed. 2021;60(1):197–201.

Article  CAS  Google Scholar 

Gao H, Lin JB, Wang SM, Tao QQ, Tang BZ, Chen HY, Xu JJ. Near-infrared II aggregation-induced electrochemiluminescence of organic dots. Chem Commun. 2024;60(5):562–5.

Article  CAS  Google Scholar 

Liu JX, Ming WJ, Zhang J, Zhou XB, Qin YL, Wu L. Aggregation-induced electrochemiluminescence based on intramolecular charge transfer and twisted molecular conformation for label-free immunoassay. Anal Chim Acta. 2024;1320: 342994.

Article  CAS  PubMed  Google Scholar 

Ishimatsu R, Matsunami S, Kasahara T, Mizuno J, Edura T, Adachi C, Nakano K, Imato T. Electrogenerated chemiluminescence of donor-acceptor molecules with thermally activated delayed fluorescence. Angew Chem Int Ed. 2014;53(27):6993–6.

Article  CAS  Google Scholar 

Liu JX, Yang LX, Li SJ, Zhang K, Zhou XB, Li G, Wu L, Qin YL. Near-infrared electrochemiluminescence biosensors facilitated by thermally activated delayed fluorescence (TADF) emitters for ctDNA analysis. Biosens Bioelectron. 2024;251: 116103.

Article  CAS  PubMed  Google Scholar 

Kumar S, Tourneur P, Adsetts JR, Wong MY, Rajamalli P, Chen DY, Lazzaroni R, Viville P, Cordes DB, Slawin AMZ, Olivier Y, Cornil J, Ding ZF, Zysman-Colman E. Photoluminescence and electrochemiluminescence of thermally activated delayed fluorescence (TADF) emitters containing diphenylphosphine chalcogenide-substituted carbazole donors. J Mater Chem C. 2022;10(12):4646–67.

Article  CAS  Google Scholar 

Youn Lee S, Yasuda T, Nomura H, Adachi C. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules. Appl Phys Lett. 2012;101(9): 093306.

Article  Google Scholar 

Jia YL, Lin JB, Gao H, Chen HY, Xu JJ. Molecular planar rigidity promoted aggregation-induced delayed electrochemiluminescence of organic dots for nucleic acid assay. Anal Chem. 2024;96(45):18214–20.

Article  CAS  PubMed  Google Scholar 

Wang C, Wu J, Huang H, Xu QQ, Ju HX. Electrochemiluminescence of polymer dots featuring thermally activated delayed fluorescence for sensitive DNA methylation detection. Anal Chem. 2022;94(45):15695–702.

Article  CAS  PubMed  Google Scholar 

Li WJ, Pan YY, Xiao R, Peng QM, Zhang ST, Ma DG, Li F, Shen FZ, Wang YH, Yang B, Ma YG. Employing ⁓100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited state. Adv Funct Mater. 2014;24(11):1609–14.

Article  CAS  Google Scholar 

Hu YX, Miao JS, Hua T, Huang ZY, Qi YY, Zou Y, Qiu YT, Xia H, Liu H, Cao XS, Yang CL. Efficient selenium-integrated TADF OLEDs with reduced roll-off. Nat Photon. 2022;16:803–10.

Article  CAS  Google Scholar 

Wang C, Cui LJ, Wu J, Hu XF, Wu XT, Cui ZH, Ju HX. Electrochemiluminescence of hot exciton nanomaterial with boosted efficiency for visual bioanalysis. Nano Today. 2024;54: 102131.

Article  CAS  Google Scholar 

Li WJ, Liu DD, Shen FZ, Ma DG, Wang ZM, Feng T, Xu YX, Yang B, Ma YG. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence. Adv Funct Mater. 2012;22(13):2797–803.

Article  CAS  Google Scholar 

Yao L, Yang B, Ma YG. Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Sci China Chem. 2014;57:335–45.

Article  CAS  Google Scholar 

Pan YY, Li WJ, Zhang ST, Yao L, Gu C, Xu H, Yang B, Ma YG. High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons. Adv Opt Mater. 2014;2(6):510–5.

Article  CAS  Google Scholar 

Xu YW, Xu P, Hu DH, Ma YG. Recent progress in hot exciton materials for organic light-emitting diodes. Chem Soc Rev. 2021;50(2):1030–69.

Article  CAS 

Comments (0)

No login
gif