Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.
Article CAS PubMed Google Scholar
Miao WJ. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.
Article CAS PubMed Google Scholar
Liu ZY, Qi WJ, Xu GB. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44:3117–42.
Article CAS PubMed Google Scholar
Lei JP, Ju HX. Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence. TrAC Trends Anal Chem. 2011;30(8):1351–9.
Jia HY, Yang L, Dong X, Zhou LM, Wei Q, Ju HX. Cysteine modification of glutathione-stabilized Au nanoclusters to red-shift and enhance the electrochemiluminescence for sensitive bioanalysis. Anal Chem. 2022;94(4):2313–20.
Article CAS PubMed Google Scholar
Zhao GH, Dong X, Du Y, Zhang N, Bai GZ, Wu D, Ma HM, Wang YG, Cao W, Wei Q. Enhancing electrochemiluminescence efficiency through introducing atomically dispersed ruthenium in nickel-based metal-organic frameworks. Anal Chem. 2022;94(29):10557–66.
Article CAS PubMed Google Scholar
Kong LY, Zhao L, Liang HX, Ren X, Ma HM, Liu XJ, Fan DW, Wu D, Wei Q. Self-enhanced biosensor with luminophore-catalyst integrated strategies and ECL-RET for ultrasensitive SARS-CoV-2 N immunoassay. Sens Actuat B Chem. 2025;432: 137478.
Li YJ, Cui WR, Jiang QQ, Wu Q, Liang RP, Luo QX, Qiu JD. A general design approach toward covalent organic frameworks for highly efficient electrochemiluminescence. Nat Commun. 2021;12:4735.
Article CAS PubMed PubMed Central Google Scholar
Wang ZY, Pan JB, Li Q, Zhou Y, Yang S, Xu JJ, Hua DB. Improved AIE-active probe with high sensitivity for accurate uranyl ion monitoring in the wild using portable electrochemiluminescence system for environmental applications. Adv Funct Mater. 2020;30(30):2000220.
Doeven EH, Connell TU, Sinha N, Wenger OS, Francis PS. Electrochemiluminescence of a first-row d6 transition metal complex. Angew Chem Int Ed. 2024;63(21): e202319047.
Liu YJ, Zhang HD, Li BX, Liu JW, Jiang DC, Liu BH, Sojic N. Single biomolecule imaging by electrochemiluminescence. J Am Chem Soc. 2021;143(43):17910–4.
Article CAS PubMed Google Scholar
Valenti G, Rampazzo E, Bonacchi S, Petrizza L, Marcaccio M, Montalti M, Prodi L, Paolucci F. Variable doping induces mechanism swapping in electrogenerated chemiluminescence of Ru(bpy)32+ core-shell silica nanoparticles. J Am Chem Soc. 2016;138(49):15935–42.
Article CAS PubMed Google Scholar
Yu SQ, Du Y, Niu XH, Li GM, Zhu D, Yu Q, Zou GZ, Ju HX. Arginine-modified black phosphorus quantum dots with dual excited states for enhanced electrochemiluminescence in bioanalysis. Nat Commun. 2022;13:7302.
Article PubMed PubMed Central Google Scholar
Li LL, Zhang ZY, Chen Y, Xu Q, Zhang JR, Chen ZX, Chen Y, Zhu JJ. Sustainable and self-enhanced electrochemiluminescent ternary suprastructures derived from CsPbBr3 perovskite quantum dots. Adv Funct Mater. 2019;29(32):1902533.
Wu KQ, Zheng YJ, Chen R, Zhou ZX, Liu SQ, Shen YF, Zhang YJ. Advances in electrochemiluminescence luminophores based on small organic molecules for biosensing. Biosens Bioelectron. 2023;223: 115031.
Article CAS PubMed Google Scholar
Feng YQ, Wang NN, Ju HX. Electrochemiluminescence biosensing and bioimaging with nanomaterials as emitters. Sci China Chem. 2022;65(12):2417–36.
Feng YQ, Wang NN, Ju HX. Highly efficient electrochemiluminescence of cyanovinylene-contained polymer dots in aqueous medium and its application in imaging analysis. Anal Chem. 2018;90(2):1202–8.
Article CAS PubMed Google Scholar
Wang NN, Gao H, Li YZ, Li GM, Chen WW, Jin ZC, Lei JP, Wei Q, Ju HX. Dual intramolecular electron transfer for in situ coreactant-embedded electrochemiluminescence microimaging of membrane protein. Angew Chem Int Ed. 2021;60(1):197–201.
Gao H, Lin JB, Wang SM, Tao QQ, Tang BZ, Chen HY, Xu JJ. Near-infrared II aggregation-induced electrochemiluminescence of organic dots. Chem Commun. 2024;60(5):562–5.
Liu JX, Ming WJ, Zhang J, Zhou XB, Qin YL, Wu L. Aggregation-induced electrochemiluminescence based on intramolecular charge transfer and twisted molecular conformation for label-free immunoassay. Anal Chim Acta. 2024;1320: 342994.
Article CAS PubMed Google Scholar
Ishimatsu R, Matsunami S, Kasahara T, Mizuno J, Edura T, Adachi C, Nakano K, Imato T. Electrogenerated chemiluminescence of donor-acceptor molecules with thermally activated delayed fluorescence. Angew Chem Int Ed. 2014;53(27):6993–6.
Liu JX, Yang LX, Li SJ, Zhang K, Zhou XB, Li G, Wu L, Qin YL. Near-infrared electrochemiluminescence biosensors facilitated by thermally activated delayed fluorescence (TADF) emitters for ctDNA analysis. Biosens Bioelectron. 2024;251: 116103.
Article CAS PubMed Google Scholar
Kumar S, Tourneur P, Adsetts JR, Wong MY, Rajamalli P, Chen DY, Lazzaroni R, Viville P, Cordes DB, Slawin AMZ, Olivier Y, Cornil J, Ding ZF, Zysman-Colman E. Photoluminescence and electrochemiluminescence of thermally activated delayed fluorescence (TADF) emitters containing diphenylphosphine chalcogenide-substituted carbazole donors. J Mater Chem C. 2022;10(12):4646–67.
Youn Lee S, Yasuda T, Nomura H, Adachi C. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules. Appl Phys Lett. 2012;101(9): 093306.
Jia YL, Lin JB, Gao H, Chen HY, Xu JJ. Molecular planar rigidity promoted aggregation-induced delayed electrochemiluminescence of organic dots for nucleic acid assay. Anal Chem. 2024;96(45):18214–20.
Article CAS PubMed Google Scholar
Wang C, Wu J, Huang H, Xu QQ, Ju HX. Electrochemiluminescence of polymer dots featuring thermally activated delayed fluorescence for sensitive DNA methylation detection. Anal Chem. 2022;94(45):15695–702.
Article CAS PubMed Google Scholar
Li WJ, Pan YY, Xiao R, Peng QM, Zhang ST, Ma DG, Li F, Shen FZ, Wang YH, Yang B, Ma YG. Employing ⁓100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited state. Adv Funct Mater. 2014;24(11):1609–14.
Hu YX, Miao JS, Hua T, Huang ZY, Qi YY, Zou Y, Qiu YT, Xia H, Liu H, Cao XS, Yang CL. Efficient selenium-integrated TADF OLEDs with reduced roll-off. Nat Photon. 2022;16:803–10.
Wang C, Cui LJ, Wu J, Hu XF, Wu XT, Cui ZH, Ju HX. Electrochemiluminescence of hot exciton nanomaterial with boosted efficiency for visual bioanalysis. Nano Today. 2024;54: 102131.
Li WJ, Liu DD, Shen FZ, Ma DG, Wang ZM, Feng T, Xu YX, Yang B, Ma YG. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence. Adv Funct Mater. 2012;22(13):2797–803.
Yao L, Yang B, Ma YG. Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Sci China Chem. 2014;57:335–45.
Pan YY, Li WJ, Zhang ST, Yao L, Gu C, Xu H, Yang B, Ma YG. High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons. Adv Opt Mater. 2014;2(6):510–5.
Xu YW, Xu P, Hu DH, Ma YG. Recent progress in hot exciton materials for organic light-emitting diodes. Chem Soc Rev. 2021;50(2):1030–69.
Comments (0)