Point-of-Care Testing for Abnormal Amino Acid Metabolism: Visualized Colorimetric Detection of Tryptophan Based on Au@MnO Nanoparticles

Bray NJ, Owen MJ. A developmental perspective on the convergence of genetic risk factors for neuropsychiatric disorders. Biolog Psych. 2020;87:98–9.

Article  Google Scholar 

Li J, Du N, Guan R, Zhao S. Construction of a chiral fluorescent probe for tryptophan enantiomers/ascorbic acid identification. ACS Appl Mater Interfaces. 2023;15:23642–52.

Article  CAS  PubMed  Google Scholar 

Singh AK, Agrahari S, Shukla S, Tiwari I, Ahmad M, Silva SRP. An array-based photolithographically patterned electrochemical sensing platform for highly sensitive determination of uric acid, dopamine, l-tryptophan, and pyridoxine in biological samples. J Anal Test. 2024;8:505–17.

Article  Google Scholar 

Kaper T, Looger LL, Takanaga H, Platten M, Steinman L, Frommer WB. Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol. 2007;5: e257.

Article  PubMed  PubMed Central  Google Scholar 

Zhang R, Jamal R, Ge Y, Zhang W, Yu Z, Yan Y, Liu Y, Abdiryim T. Functionalized PProDOT@nitrogen-doped carbon hollow spheres composites for electrochemical sensing of tryptophan. Carbon. 2020;161:842–55.

Article  CAS  Google Scholar 

Fan M, Lu D, You R, Chen C, Lu Y, Wu Y, Shen H, Feng S. Highly sensitive detection of tryptophan (Trp) in serum based on diazo-reaction coupling with surface-enhanced Raman scattering and colorimetric assay. Anal Chim Acta. 2020;1119:52–9.

Article  CAS  PubMed  Google Scholar 

Hasokawa M, Shinohara M, Tsugawa H, Bamba T, Fukusaki E, Nishiumi S, Nishimura K, Yoshida M, Ishida T, Hirata K. Identification of biomarkers of stent restenosis with serum metabolomic profiling using gas chromatography/mass spectrometry. Circ J. 2012;76:1864–73.

Article  CAS  PubMed  Google Scholar 

Çevikkalp SA, Löker GB, Yaman M, Amoutzopoulos B. A simplified HPLC method for determination of tryptophan in some cereals and legumes. Food Chem. 2016;193:26–9.

Article  PubMed  Google Scholar 

Wang T, Xu C, Xu S, Gao L, Blaženović I, Ji J, Wang J, Sun X. Untargeted metabolomics analysis by gas chromatography/time-of-flight mass spectrometry of human serum from methamphetamine abusers. Addict Biol. 2021;26: e13062.

Article  CAS  PubMed  Google Scholar 

Li Z, Wu J, Jia L. Analysis of amino acids in blood by combining zeolitic imidazolate framework-8-based solid phase extraction and capillary electrophoresis. J Pharm Biomed Anal. 2019;168:30–7.

Article  CAS  PubMed  Google Scholar 

Timperman AT, Oldenburg KE, Sweedler JV. Native fluorescence detection and spectral differentiation of peptides containing tryptophan and tyrosine in capillary electrophoresis. Anal Chem. 1995;67:3421–6.

Article  CAS  PubMed  Google Scholar 

Xia HL, Zhang J, Si J, Wang H, Zhou K, Wang L, Li J, Sun W, Qu L, Li J, Liu XY. Size- and emission-controlled synthesis of full-color luminescent metal-organic frameworks for tryptophan detection. Angew Chem Int Ed. 2023;62: e202308506.

Article  CAS  Google Scholar 

Ungor D, Horváth K, Dékány I, Csapó E. Red-emitting gold nanoclusters for rapid fluorescence sensing of tryptophan metabolites. Sens Actuators B: Chem. 2019;288:728–33.

Article  CAS  Google Scholar 

Wu Y, Wang T, Zhang C, Xing XH. A rapid and specific colorimetric method for free tryptophan quantification. Talanta. 2018;176:604–9.

Article  CAS  PubMed  Google Scholar 

He W, Chen B, Liu JY. Quantitative detection of tryptophan and levofloxacin based on inner-filter effect of fluorescence. Chin J Anal Lab. 2024;43:1741–6.

CAS  Google Scholar 

Xu N, Xiao M, Yu Z, Jin B, Yang M, Yi C. On-site quantitation of xanthine in fish and serum using a smartphone-based spectrophotometer integrated with a dual-readout nanosensing assay. Food Chem. 2024;431: 137107.

Article  CAS  PubMed  Google Scholar 

Rao H, Xue X, Luo M, Liu H, Xue Z. Recent advances in the development of colorimetric analysis and testing based on aggregation-induced nanozymes. Chin Chem Lett. 2021;32:25–32.

Article  CAS  Google Scholar 

Chu C, Jiang M, Hui Y, Huang Y, Kong W, Zhu W, Wei J, Wu L, Huang C, Yu XF, Zhao Z, Zhou W, Geng S, Ji L. Colorimetric immunosensing using liposome encapsulated MnO2 nanozymes for SARS-CoV-2 antigen detection. Bios Bioelectron. 2023;239: 115623.

Article  CAS  Google Scholar 

Zhang F, Shang Y, Yu R, Wang Y, Feng F, Guo Q, Xing J, Tian Z, Zeng J, Yan Z. Cu2O induced Au nanochains for highly sensitive dual-mode detection of hydrogen sulfide. J Hazard Mater. 2022;436: 129144.

Article  CAS  PubMed  Google Scholar 

Ojea-Jiménez I, Puntes V. Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions. J Am Chem Soc. 2009;131:13320–7.

Article  PubMed  Google Scholar 

Chen N, Wu S, Xu Y, Lv S, Wang X, Zhang Q, Pan B. Accurately recognizing chromium species with multi-functionalized nano Au-based sensor array. J Hazard Mater. 2024;476: 134981.

Article  CAS  PubMed  Google Scholar 

Sun H, He J, Wang J, Zhang SY, Liu C, Sritharan T, Mhaisalkar S, Han MY, Wang D, Chen H. Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. J Am Chem Soc. 2013;135:9099–110.

Article  CAS  PubMed  Google Scholar 

Kim DY, Kim M, Shinde S, Saratale RG, Sung JS, Ghodake G. Temperature dependent synthesis of tryptophan-functionalized gold nanoparticles and their application in imaging human neuronal cells. ACS Sustain Chem Engin. 2017;5:7678–89.

Article  CAS  Google Scholar 

Kim DY, Shinde S, Ghodake G. Colorimetric detection of magnesium (II) ions using tryptophan functionalized gold nanoparticles. Sci Rep. 2017;7:3966.

Article  PubMed  PubMed Central  Google Scholar 

Rong M, Huang Y, Zhuang X, Ma Y, Xie H, Wu Y, Niu L. AND logic-gate-based Au@MnO2 sensing platform for tetracyclines with fluorescent and colorimetric dual-signal readouts. Sens Actuators B: Chem. 2023;393: 134204.

Article  CAS  Google Scholar 

Zhang Y, Fan J, Zhao J, Xu Z. A biochip based on shell-isolated Au@MnO2 nanoparticle array-enhanced fluorescence effect for simple and sensitive exosome assay. Biosens Bioelectron. 2022;216: 114373.

Article  CAS  PubMed  Google Scholar 

Xu J, Gu P, Birch DJS, Chen Y. Plasmon-promoted electrochemical oxygen evolution catalysis from gold decorated MnO2 nanosheets under green light. Adv Funct Mater. 2018;28:1801573.

Article  Google Scholar 

Li Y, Wei X, Han S, Chen L, Shi J. MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic solutions. Angew Chem Int Ed. 2021;60:21464–72.

Article  CAS  Google Scholar 

Yang W, Su Za XuZ, Yang W, Peng Y, Li J. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates. Appl Catal B: Environm. 2020;260:118150.

Article  CAS  Google Scholar 

Gao M, Song Y, Liu Y, Jiang W, Peng J, Shi L, Jia R, Muhammad Y, Huang L. Controlled fabrication of Au@MnO2 core/shell assembled nanosheets by localized surface plasmon resonance. Appl Surface Sci. 2021;537: 147912.

Article  CAS  Google Scholar 

Grys DB, de Nijs B, Salmon AR, Huang J, Wang W, Chen WH, Scherman OA, Baumberg JJ. Citrate coordination and bridging of gold nanoparticles: the role of gold adatoms in AuNP aging. ACS Nano. 2020;14:8689–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia D, Liu H, Xu B, Wang Y, Liao Y, Huang Y, Ye L, He C, Wong PK, Qiu R. Single Ag atom engineered 3D-MnO2 porous hollow microspheres for rapid photothermocatalytic inactivation of E. coli under solar light. Appl Catal B: Environm. 2019;245:177–89.

Article  CAS  Google Scholar 

Yue L, Yang K, Li J, Cheng Q, Wang R. Self-propelled asymmetrical nanomotor for self-reported gas therapy. Small. 2021;17:2104403.

Article  Google Scholar 

Li Y, Qian Z, Shen C, Gao Z, Tang K, Liu Z, Chen Z. Colorimetric sensors for alkaloids based on the etching of Au@MnO2 nanoparticles and MnO2 nanostars. ACS Appl Nano Mater. 2021;4:8465–72.

Comments (0)

No login
gif