The most common European tick species, Ixodes ricinus, is the principal vector of Borrelia and tick-borne encephalitis virus and several other pathogens of public health relevance in Europe. Comprehensive data on tick abundance and the underlying ecological drivers are crucial for developing awareness and control strategies and to assess future changes in tick-borne disease risk. We aimed to provide a Germany-wide map of I. ricinus abundance to aid in disease transmission risk assessment. During 2018−2020, questing tick density was assessed at 83 sites across the whole country by drag flagging, whereby 49,344 I. ricinus nymphs and adults were collected. Relationships between climate, land cover, and monthly questing I. ricinus nymph density were explored and used to draw an abundance map. Highest tick hazard was observed in areas near the coast with mild winters and moist springs, and in mid-elevation mountain ranges, which represent popular tourist destinations. The ticks’ seasonal activity pattern was predominantly unimodal. The fact that the observed regional differences are contradictory to a previous estimation based on a combination of regional studies illustrates the need for an extensive and coordinated sampling effort to reliably estimate tick abundance at larger spatial scales. Combined with data on tick-borne pathogens, our study enables estimating the density of infected ticks and consequently the risk of acquiring an infectious tick bite. Moreover, the observed relationships with climate and land cover can help to predict future developments of tick hazard under different climate scenarios in Central Europe.
Comments (0)