Differences in metabolite profiling by cold atmospheric plasma in normal and cancer cells

Adachi T, Tanaka H, Nonomura S, Hara H, Kondo SI, Hori M (2015) Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial–nuclear network. Free Radical Biol Med 79:28–44. https://doi.org/10.1016/j.freeradbiomed.2014.11.014

Article  CAS  Google Scholar 

Bekeschus S, Eisenmann S, Sagwal SK, Bodnar Y, Moritz J, Poschkamp B, Gandhirajan RK (2020) xCT (SLC7A11) expression confers intrinsic resistance to physical plasma treatment in tumor cells. Redox Biol 30:101423. https://doi.org/10.1016/j.redox.2019.101423

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bekeschus S, Liebelt G, Menz J, Berner J, Sagwal SK, Wende K, Schmidt A (2021) Tumor cell metabolism correlates with resistance to gas plasma treatment: The evaluation of three dogmas. Free Radical Biol Med 167:12–28. https://doi.org/10.1016/j.freeradbiomed.2021.02.035

Article  CAS  Google Scholar 

Blacker TS, Duchen MR, Bain AJ (2023) NAD (P) H binding configurations revealed by time-resolved fluorescence and two-photon absorption. Biophys J 122(7):1240–1253. https://doi.org/10.1016/j.bpj.2023.02.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canal C, Fontelo R, Hamouda I, Guillem-Marti J, Cvelbar U, Ginebra MP (2017) Plasma-induced selectivity in bone cancer cells death. Free Radical Biol Med 110:72–80. https://doi.org/10.1016/j.freeradbiomed.2017.05.023

Article  CAS  Google Scholar 

Cao R, Wallrabe H, Periasamy A (2020) Multiphoton FLIM imaging of NAD (P) H and FAD with one excitation wavelength. J Biomed Opt 25(1):014510–014510. https://doi.org/10.1117/1.JBO.25.1.014510

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Almeida AJPO, de Oliveira JCPL, da Silva Pontes LV, de Souza Júnior JF, Gonçalves TAF, Dantas SH, de Medeiros IA (2022) ROS: basic concepts, sources, cellular signaling, and its implications in aging pathways. Oxidative Med Cell Longevity 2022(1):1225578. https://doi.org/10.1155/2022/1225578

Ermakov AM, Ermakova ON, Afanasyeva VA, Popov AL (2021) Dose-dependent effects of cold atmospheric argon plasma on the mesenchymal stem and osteosarcoma cells in vitro. Int J Mol Sci 22(13):6797. https://doi.org/10.3390/ijms22136797

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta GS (2022) The lactate and the lactate dehydrogenase in inflammatory diseases and major risk factors in COVID-19 patients. Inflammation 45(6):2091–2123. https://doi.org/10.1007/s10753-022-01680-7

Article  CAS  PubMed  Google Scholar 

Haertel B, Von Woedtke T, Weltmann KD, Lindequist U (2014) Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomolecules Ther 22(6):477. https://doi.org/10.4062/biomolther.2014.105

Haralambiev L, Wien L, Gelbrich N, Lange J, Bakir S, Kramer A, Stope MB (2020) Cold atmospheric plasma inhibits the growth of osteosarcoma cells by inducing apoptosis, independent of the device used. Oncol Lett 19(1):283–290. https://doi.org/10.3892/ol.2019.11115

Article  CAS  PubMed  Google Scholar 

Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD (P) H and flavoprotein. Biophys J 82(5):2811–2825. https://doi.org/10.1016/S0006-3495(02)75621-X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalckar HM, Shafran M (1947) Differential spectrophotometry of purine compounds by means of specific enzymes. 1. Determination of hydroxypurine compounds. 429–443. https://doi.org/10.1016/S0021-9258(17)30997-3

Kim SJ, Chung TH (2016) Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Sci Rep 6(1):20332. https://doi.org/10.1038/srep20332

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kocianova E, Piatrikova V, Golias T (2022) Revisiting the Warburg effect with focus on lactate. Cancers 14(24):6028. https://doi.org/10.3390/cancers14246028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kosmachev PV, Panin SV, Panov IL, Bochkareva SA (2022) Surface Modification of carbon fibers by low-temperature plasma with runaway electrons for manufacturing PEEK-based laminates. Materials 15(21):7625. https://doi.org/10.3390/ma15217625

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kosmachev PV, Panin SV, Panov IL, Bochkareva SA (2023) Structure and Deformation Behavior of Polyphenylene Sulfide-Based Laminates Reinforced with Carbon Fiber Tapes Activated by Cold Atmospheric Plasma. Polymers 16(1):121. https://doi.org/10.3390/polym16010121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korotky VN (2018) Feasibility of using cold atmospheric plasma in the treatment of cancer patients (literature review). Sib J Oncol 17(1):72–81

Article  Google Scholar 

Lepekhina TB, Nikolaev VV, Darvin ME, Zuhayri H, Snegerev MS, Lozhkomoev AS, Kistenev YV (2024) Two-Photon-Excited FLIM of NAD (P) H and FAD—Metabolic Activity of Fibroblasts for the Diagnostics of Osteoimplant Survival. Int J Mol Sci 25(4):2257. https://doi.org/10.3390/ijms25042257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nicol MJ, Brubaker TR, Honish BJ, Simmons A, Kazemi A, Geissel MA, Kirimanjeswara GS (2020) Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species. Sci Rep 10:3066. https://doi.org/10.1038/s41598-020-59652-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nitsch A, Sieb KF, Qarqash S, Schoon J, Ekkernkamp A, Wassilew GI, Haralambiev L (2023) Selective effects of cold atmospheric plasma on bone sarcoma cells and human osteoblasts. Biomedicines 11(2):601. https://doi.org/10.3390/biomedicines11020601

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mateu-Sanz M, Tornín J, Ginebra MP, Canal C (2021) Cold atmospheric plasma: a new strategy based primarily on oxidative stress for osteosarcoma therapy. J Clin Med 10(4):893. https://doi.org/10.3390/jcm10040893

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitra S, Nguyen LN, Akter M, Park G, Choi EH, Kaushik NK (2019) Impact of ROS generated by chemical, physical, and plasma techniques on cancer attenuation. Cancers 11(7):1030. https://doi.org/10.3390/cancers11071030

Article  PubMed  PubMed Central  Google Scholar 

Murakami T (2019) Numerical modelling of the effects of cold atmospheric plasma on mitochondrial redox homeostasis and energy metabolism. Sci Rep 9(1):17138. https://doi.org/10.1038/s41598-019-53219-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olovyannikova RYa, Makarenko TA, Lychkovskaya EV, Gudkova ES, Muradyan GA, Medvedeva NN, Chekisheva TN, Berdnikov SI, Semichev EV, Malinovskaya NA, Salmina AB, Salmin VV (2020) Chemical mechanisms of action of cold plasma on cells. Fundam Clin Med 5(4):104−115 https://doi.org/10.23946/2500-0764-2020-5-4-104-115

Rana JN, Mumtaz S, Han I, Choi EH (2025) Unveiling the Therapeutic Potential of Soft Plasma Jet and Nitric-Oxide Enriched Plasma-Activated Water (NO-PAW) on Oral Cancer YD-10B Cells: A Comprehensive Investigation of Direct and Indirect Treatments. Plasma Chem Plasma Process 45:725–752. https://doi.org/10.1007/s11090-025-10539-2

Article  CAS  Google Scholar 

Schilling K, Brown E, Zhang X (2022) NAD(P)H autofluorescence lifetime imaging enables single cell analyses of cellular metabolism of osteoblasts in vitro and in vivo via two-photon microscopy. Bone 154:116257. https://doi.org/10.1016/j.bone.2021.116257

Shan K, Feng N, Zhu D, Qu H, Fu G, Li J, Chen YO (2022) Free docosahexaenoic acid promotes ferroptotic cell death via lipoxygenase dependent and independent pathways in cancer cells. Eur J Nutr 61(8):4059–4075. https://doi.org/10.1007/s00394-022-02940-w

Article  CAS  PubMed  Google Scholar 

Tabares FL, Junkar I (2021) Cold plasma systems and their application in surface treatments for medicine. Molecules 26(7):1903. https://doi.org/10.3390/molecules26071903

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tornín J, Gallego B, Rey V, Murillo D, Huergo C, Rodríguez A, Rodríguez R (2023) Cold plasma-treated medium preferentially eliminates doxorubicin-resistant osteosarcoma cells. Free Radical Biol Med 209:127–134. https://doi.org/10.1016/j.freeradbiomed.2023.10.394

Article  CAS  Google Scholar 

Comments (0)

No login
gif