Exploring the efficacy of graphene circular patch nanoantenna in optical spectrum

Azam S, Khan MAK, Shaem TA, Khan AZ (2017) Graphene based circular patch terahertz antenna using novel substrate materials. In: 2017 6th international conference on informatics, electronics and vision and 2017 7th international symposium in computational medical and health technology, ICIEV-ISCMHT 2017

Babicheva VE (2023) Optical processes behind plasmonic applications. Nanomaterials 13(7):1270

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balanis CA (2016) Antenna theory: analysis and design. John Wiley & sons, Hoboken

Google Scholar 

Biabanifard S (2018) Design and comparison of terahertz graphene antenna: ordinary dipole, fractal dipole, spiral, bow-tie and log-periodic. Eng Technol Open Access J. https://doi.org/10.19080/ETOAJ.2018.02.555584

Article  Google Scholar 

Biswas RV (2023) A waveguide-fed hybrid graphene plasmonic nanoantenna for on-chip wireless optical communication. In: Ahmad M, Uddin MS, Jang YM (eds) Proceedings of international conference on information and communication technology for development: ICICTD 2022. Springer Nature, Singapore

Google Scholar 

Brunetti G, Sasanelli N, Armenise MN, Ciminelli C (2022) Nanoscale optical trapping by means of dielectric bowtie. Photonics. https://doi.org/10.3390/photonics9060425

Article  Google Scholar 

Dash S, Patnaik A (2021) Impact of silicon-based substrates on graphene THz antenna. Phys E Low Dimens Syst Nanostruct 126:114479. https://doi.org/10.1016/j.physe.2020.114479

Article  CAS  Google Scholar 

Gao Y, Lou W, Lu H (2020) A reconfigurable graphene nanoantenna on quartz substrate. Instrument Mesure Metrol. https://doi.org/10.18280/i2m.190508

Article  Google Scholar 

Gour S, Chaudhary P, Rathi A (2022) Survey of microstrip antenna in nanotechnology using different nanostructures. Flexible electronics for electric vehicles: select proceedings of FlexEV—2021. Springer, Cham, pp 39–46

Google Scholar 

Hasan MR, Hellesø OG (2021) Dielectric optical nanoantennas. Nanotechnology. https://doi.org/10.1088/1361-6528/abdceb

Article  PubMed  Google Scholar 

Hassan HMI, Areed NFF, El-Mikati HA, Hameed MFO, Obayya SSA (2022) Low loss hybrid plasmonic photonic crystal waveguide for optical communication applications. Opt Quantum Electron 54(7):431

Article  CAS  Google Scholar 

Jornet JM, Sangwan A (2023) Nanonetworking in the terahertz band and beyond. IEEE Nanotechnol Mag. https://doi.org/10.1109/MNANO.2023.3262105

Article  Google Scholar 

Kavánková I, Kovar S, Valouch J, Adámek M (2023) Review of nanoantennas application. Przeglad Elektrotech. https://doi.org/10.15199/48.2023.01.03

Article  Google Scholar 

Kavitha S, Sairam KVSSSS, Singh A (2022) Graphene plasmonic nano-antenna for terahertz communication. SN Appl Sci. https://doi.org/10.1007/s42452-022-04986-1

Article  Google Scholar 

Mohsin ASM, Ahmed F (2022) Study the optical property of gold nanoparticle and apply them to design bowtie nanoantenna using FDTD simulation. J Optics (India). https://doi.org/10.1007/s12596-022-00837-9

Article  Google Scholar 

Nevels RD, Abbas HT (2016) Optical nanoantennas. In: Chen ZN, Liu D, Nakano H, Qing X, Zwick T (eds) Handbook of antenna technologies. Springer, Singapore

Google Scholar 

Rubani Q, Gupta SH, Kumar A (2019) Design and analysis of circular patch antenna for WBAN at terahertz frequency. Optik (Stuttg) 185:529–536

Article  Google Scholar 

Shalini M, Madhan MG (2019) Design and analysis of a dual-polarized graphene based microstrip patch antenna for terahertz applications. Optik (Stuttg). https://doi.org/10.1016/j.ijleo.2019.163050

Article  Google Scholar 

Shirzadian Gilan M, Rashed-Mohassel J, Naser-Moghaddasi M, Khatir M (2019) Design of a wideband microstrip nanoantenna array. Opt Quantum Electron. https://doi.org/10.1007/s11082-019-1852-6

Article  Google Scholar 

Thampy AS, Darak MS, Dhamodharan SK (2015) Analysis of graphene based optically transparent patch antenna for terahertz communications. Phys E Low Dimens Syst Nanostruct. https://doi.org/10.1016/j.physe.2014.09.023

Article  Google Scholar 

Comments (0)

No login
gif