Fernandes MGO, Dias M, Santos R, Ravara S, Fernandes P, Firmino-Machado J, et al. Recommendations for the implementation of a national lung cancer screening program in Portugal-a consensus statement. Pulmonology. 2024;30:625–35. https://doi.org/10.1016/j.pulmoe.2024.04.003.
Article CAS PubMed Google Scholar
Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023;20:624–39. https://doi.org/10.1038/s41571-023-00798-3.
Chen Q, Zheng X, Cheng W, Li J. Landscape of targeted therapies for lung squamous cell carcinoma. Front Oncol. 2024;14:1467898. https://doi.org/10.3389/fonc.2024.1467898.
Article CAS PubMed PubMed Central Google Scholar
Scott LJ. Azacitidine: a review in myelodysplastic syndromes and acute myeloid leukaemia. Drugs. 2016;76:889–900. https://doi.org/10.1007/s40265-016-0585-0.
Article CAS PubMed Google Scholar
Yang Y, Li J, Geng Y, Liu L, Li D. Azacitidine regulates DNA methylation of GADD45γ in myelodysplastic syndromes. J Clin Lab Anal. 2021;35:e23597. https://doi.org/10.1002/jcla.23597.
Article CAS PubMed Google Scholar
Laille E, Shi T, Garcia-Manero G, Cogle CR, Gore SD, Kumar KJ, et al. Extended dosing of oral azacitidine (CC-486) for 14 and 21 days provides more effective methylation reversal than a 7-day schedule. Blood. 2012;120:1337. https://doi.org/10.1182/blood.v120.21.1337.1337.
Jen EY, Wang X, Li M, Li H, Lee SL, Ni N, et al. FDA Approval summary: oral azacitidine for continued treatment of adults with acute myeloid leukemia unable to complete intensive curative therapy. Clin Cancer Res. 2022;28:2989–93. https://doi.org/10.1158/1078-0432.CCR-21-4525.
Article CAS PubMed PubMed Central Google Scholar
Witkowska M, Golusińska-Kardach E, Golusiński W, Florek E. Polydopamine-based material and their potential in head and neck cancer therapy-current state of knowledge. Int J Mol Sci. 2023;24:4890. https://doi.org/10.3390/ijms24054890.
Article CAS PubMed PubMed Central Google Scholar
Sun Y, Lei C, Qiao R, Li C. Recent advances in carrier-free natural small molecule self-assembly for drug delivery. Biomater Sci. 2024;12:6237–52. https://doi.org/10.1039/d4bm01153h.
Article CAS PubMed Google Scholar
Biancacci I, De Lorenzi F, Theek B, Bai X, May JN, Consolino L, et al. Monitoring epr effect dynamics during nanotaxane treatment with theranostic polymeric micelles. Adv Sci (Weinh). 2022;9:e2103745. https://doi.org/10.1002/advs.202103745.
Article CAS PubMed Google Scholar
Awaad A, Takemoto H, Iizuka M, Ogi K, Mochida Y, Ranneh AH, et al. Changeable net charge on nanoparticles facilitates intratumor accumulation and penetration. J Control Release. 2022;346:392–404. https://doi.org/10.1016/j.jconrel.2022.04.025.
Article CAS PubMed Google Scholar
Ma H, Peng J, Zhang J, Pan L, Ouyang J, Li Z, et al. Frontiers in preparations and promising applications of mesoporous polydopamine for cancer diagnosis and treatment. Pharmaceutics. 2022;15:15. https://doi.org/10.3390/pharmaceutics15010015.
Article CAS PubMed PubMed Central Google Scholar
Chen BY, Hong SY, Wang HM, Shi Y, Wang P, Wang XJ, et al. The subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles. Part Fibre Toxicol. 2023;20:38. https://doi.org/10.1186/s12989-023-00548-4.
Article CAS PubMed PubMed Central Google Scholar
Ling J, Cai Y, Feng H, Liu Z, Ouyang XK. Polydopamine-modified copper coordination mesoporous silica nanoparticles loaded with disulfiram for synergistic chemo-photothermal therapy. Pharmaceutics. 2024;16:512. https://doi.org/10.3390/pharmaceutics16040512.
Article CAS PubMed PubMed Central Google Scholar
Zhang M, Wang L, Jin H, Zhao N, Liu Y, Lan S, et al. Employing single valency polyphenol to prepare metal-phenolic network antitumor reagents through FeOOH assistance. J Control Release. 2023;358:612–25. https://doi.org/10.1016/j.jconrel.2023.05.020.
Article CAS PubMed Google Scholar
Kinfu HH, Rahman MM. Separation performance of membranes containing ultrathin surface coating of metal-polyphenol network. Membranes (Basel). 2023;13:481. https://doi.org/10.3390/membranes13050481.
Article CAS PubMed PubMed Central Google Scholar
Chang YF, Cui PF, Zhou SW, Qiu L, Jiang PJ, Chen SQ, et al. Metal-phenolic network for cancer therapy. J Drug Deliv Sci Technol. 2023;81:104194. https://doi.org/10.1016/j.jddst.2023.104194.
Shan L, Gao G, Wang W, Tang W, Wang Z, Yang Z, et al. Self-assembled green tea polyphenol-based coordination nanomaterials to improve chemotherapy efficacy by inhibition of carbonyl reductase 1. Biomaterials. 2019;210:62–9. https://doi.org/10.1016/j.biomaterials.2019.04.032.
Article CAS PubMed PubMed Central Google Scholar
Agarwal A, Kansal V, Farooqi H, Prasad R, Singh VK. Epigallocatechin gallate (EGCG), an active phenolic compound of green tea, inhibits tumor growth of head and neck cancer cells by targeting DNA hypermethylation. Biomedicines. 2023;11:789. https://doi.org/10.3390/biomedicines11030789.
Article CAS PubMed PubMed Central Google Scholar
Tibben BM, Rothbart SB. Mechanisms of DNA methylation regulatory function and crosstalk with histone lysine methylation. J Mol Biol. 2024;436:168394. https://doi.org/10.1016/j.jmb.2023.168394.
Article CAS PubMed Google Scholar
Yuan Y, Hong T, Chen Y, Wang Y, Qiu X, Zheng F, et al. Luminescence sensing for qualitative and quantitative detection of 5-methylcytosine. Anal Chem. 2018;90:10064–8. https://doi.org/10.1021/acs.analchem.8b02842.
Article CAS PubMed Google Scholar
Ning YQ, Liu N, Lan KK, Su YN, Li L, Chen S, et al. DREAM complex suppresses DNA methylation maintenance genes and precludes DNA hypermethylation. Nat Plants. 2020;6:942–56. https://doi.org/10.1038/s41477-020-0710-7.
Article CAS PubMed Google Scholar
Laranjeira ABA, Hollingshead MG, Nguyen D, Kinders RJ, Doroshow JH, Yang SX. DNA damage, demethylation and anticancer activity of DNA methyltransferase (DNMT) inhibitors. Sci Rep. 2023;13:5964. https://doi.org/10.1038/s41598-023-32509-4.
Article CAS PubMed PubMed Central Google Scholar
Xie B, Peng F, He F, Cheng Y, Cheng J, Zhou Z, et al. DNA methylation influences the CTCF-modulated transcription of RASSF1A in lung cancer cells. Cell Biol Int. 2022;46:1900–14. https://doi.org/10.1002/cbin.11868.
Article CAS PubMed Google Scholar
Din Shah NU, Ali MN, Ganai BA, Mudassar S, Khan MS, Kour J, et al. Association of promoter methylation of RASSF1A and KRAS mutations in non-small cell lung carcinoma in Kashmiri population (India). Heliyon. 2020;6:e03488. https://doi.org/10.1016/j.heliyon.2020.e03488.
Article CAS PubMed PubMed Central Google Scholar
Sugara M, Chowdappa R, Kumar KVV, Gawari R, Swamy SN, Kumar SS. Aberrant promoter hypermethylation of p16 and RASSF1a genes in colorectal cancer-significance in young patients. Indian J Surg Oncol. 2021;12:454–9. https://doi.org/10.1007/s13193-021-01325-5.
Article PubMed PubMed Central Google Scholar
Xu G, Zhou X, Xing J, Xiao Y, Jin B, Sun L, et al. Identification of RASSF1A promoter hypermethylation as a biomarker for hepatocellular carcinoma. Cancer Cell Int. 2020;20:547. https://doi.org/10.1186/s12935-020-01638-5.
Comments (0)