Warhead-bearing natural compounds for multi-pathway irreversible inhibition to overcome drug resistance in colorectal cancer

Colorectal cancer. (n.d.). Retrieved November 12, 2024, from https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer

Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging therapeutic strategies to overcome drug resistance in cancer cells. Cancers. 2024;16(13):2478. https://doi.org/10.3390/CANCERS16132478.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ashique S, Bhowmick M, Pal R, Khatoon H, Kumar P, Sharma H, Garg A, Kumar S, Das U. Multi drug resistance in colorectal cancer-approaches to overcome, advancements and future success. Adv Cancer Biol Metastas. 2024;1(10):100114. https://doi.org/10.1016/J.ADCANC.2024.100114.

Article  Google Scholar 

Hlavata I, Mohelnikova-Duchonova B, Vaclavikova R, Liska V, Pitule P, Novak P, Bruha J, Vycital O, Holubec L, Treska V, Vodicka P. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis. 2012;27(2):187–96. https://doi.org/10.1093/MUTAGE/GER075.

Article  PubMed  CAS  Google Scholar 

Fleming-de-Moraes CD, Rocha MR, Tessmann JW, de Araujo WM, Morgado-Diaz JA. Crosstalk between PI3K/Akt and Wnt/β-catenin pathways promote colorectal cancer progression regardless of mutational status. Cancer Biol Ther. 2022;23(1):1–13. https://doi.org/10.1080/15384047.2022.2108690.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhu Y, Li X. Advances of Wnt signalling pathway in colorectal cancer. Cells. 2023;12(3):447. https://doi.org/10.3390/CELLS12030447.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Leiphrakpam PD, Are C. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment. Int J Mol Sci. 2024;25(6):3178. https://doi.org/10.3390/IJMS25063178.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. Mol Biomed. 2025;6(1):1–22. https://doi.org/10.1186/S43556-024-00239-2.

Article  Google Scholar 

Bauer RA. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Discov Today. 2015;20(9):1061–73. https://doi.org/10.1016/J.DRUDIS.2015.05.005.

Article  PubMed  CAS  Google Scholar 

Dungo RT, Keating GM. Afatinib: first global approval. Drugs. 2013;73(13):1503–15. https://doi.org/10.1007/S40265-013-0111-6.

Article  PubMed  CAS  Google Scholar 

Davids MS, Brown JR. Ibrutinib: a first in class covalent inhibitor of Bruton’s Tyrosine Kinase. Future Oncol. 2014;10(6):957–67. https://doi.org/10.2217/FON.14.51.

Article  PubMed  CAS  Google Scholar 

Bjij I, Olotu FA, Agoni C, Adeniji E, Khan S, El Rashedy A, Cherqaoui D, Soliman ME. Covalent Inhibition in drug discovery: filling the void in literature. Curr Top Med Chem. 2018;18(13):1135–45. https://doi.org/10.2174/1568026618666180731161438.

Article  PubMed  CAS  Google Scholar 

Aljoundi A, Bjij I, El Rashedy A, Journal, Protein MST and 2020, undefined. (n.d.). Covalent versus non-covalent enzyme inhibition: which route should we take? A justification of the good and bad from molecular modelling perspective. Springer. Retrieved fromhttps://doi.org/10.1007/s10930-020-09884-2&casa_token=dPP0Z32udHMAAAAA:NISYJVuJTYAHXjH80ciw9R79eY-_rIv4RIp1npt-xvKe24AheCkTUYUz7pgkuhy8_jzCAj0SAyftJ1hO9g

Khan S, Bjij I, Betz RM, Soliman MES. Reversible versus irreversible inhibition modes of ERK2: a comparative analysis for ERK2 protein kinase in cancer therapy. Future Med Chem. 2018;10(9):1003–15. https://doi.org/10.4155/FMC-2017-0275.

Article  PubMed  CAS  Google Scholar 

Khan S, Bjij I, Olotu FA, Agoni C, Adeniji E, Soliman MES. Covalent simulations of covalent/irreversible enzyme inhibition in drug discovery: a reliable technical protocol. Future Med Chem. 2018;10(19):2265–75. https://doi.org/10.4155/FMC-2017-0304.

Article  PubMed  CAS  Google Scholar 

Aljoundi A, Bjij I, El Rashedy A, Soliman MES. Covalent versus non-covalent enzyme inhibition: which route should we take? A justification of the good and bad from molecular modelling perspective. Protein J. 2020;39(2):97–105. https://doi.org/10.1007/S10930-020-09884-2.

Article  PubMed  CAS  Google Scholar 

Hameed MS, Cao H, Guo L, Zeng L, Ren Y. Advancements, challenges, and future frontiers in covalent inhibitors and covalent drugs: a review. Eur J Med Chem Rep. 2024;12:100217. https://doi.org/10.1016/J.EJMCR.2024.100217.

Article  CAS  Google Scholar 

Awoonor-Williams E, Walsh AG, Rowley CN. Modeling covalent-modifier drugs. Biochim Biophys Acta (BBA) Proteins Proteom. 2017;1865(11):1664–75. https://doi.org/10.1016/J.BBAPAP.2017.05.009.

Article  CAS  Google Scholar 

Gersch M, Kreuzer J, Sieber SA. Electrophilic natural products and their biological targets. Nat Prod Rep. 2012;29(6):659–82. https://doi.org/10.1039/C2NP20012K.

Article  PubMed  CAS  Google Scholar 

Hou X, Sun M, Bao T, Xie X, Wei F, Wang S. Recent advances in screening active components from natural products based on bioaffinity techniques. Acta Pharm Sinica B. 2020;10(10):1800–13. https://doi.org/10.1016/J.APSB.2020.04.016.

Article  CAS  Google Scholar 

Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. Nucleus. 2022;65(3):399–411. https://doi.org/10.1007/S13237-022-00405-3.

Article  Google Scholar 

HuHu M, Yan H, Li H, Feng Y, Sun W, Ren Y, Ma L, Zeng W, Huang F, Jiang Z, Dong H. Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma. Sci Rep. 2023;13(1):9569. https://doi.org/10.1038/s41598-023-36687-z.

Article  CAS  Google Scholar 

Alegría-Arcos M, Barbosa T, Sepúlveda F, Combariza G, González J, Gil C, Martínez A, Ramírez D. Network pharmacology reveals multitarget mechanism of action of drugs to be repurposed for COVID-19. Front Pharmacol. 2022;17(13):952192. https://doi.org/10.3389/FPHAR.2022.952192/BIBTEX.

Article  Google Scholar 

Hao T, Peng W, Wang Q, Wang B, Sun J. Reconstruction and application of Protein–Protein interaction network. Int J Mol Sci. 2016;17(6):907. https://doi.org/10.3390/IJMS17060907.

Article  PubMed  PubMed Central  Google Scholar 

Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I. Fundamentals of protein interaction network mapping. Mol Syst Biol. 2015;11(12):848. https://doi.org/10.15252/MSB.20156351.

Article  PubMed  PubMed Central  Google Scholar 

Zou JY, Chen QL, Luo XC, Damdinjav D, Abdelmohsen UR, Li HY, Battulga T, Chen HB, Wang YQ, Zhang JY. Natural products reverse cancer multidrug resistance. Front Pharmacol. 2024;8(15):1348076. https://doi.org/10.3389/FPHAR.2024.1348076.

Article  Google Scholar 

Solca F, Dahl G, Zoephel A, Bader G, Sanderson M, Klein C, Kraemer O, Himmelsbach F, Haaksma E, Adolf GR. Target binding properties and cellular activity of Afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther. 2012;343(2):342–50. https://doi.org/10.1124/JPET.112.197756.

Article  PubMed  CAS  Google Scholar 

Wilding B, Scharn D, Böse D, Baum A, Santoro V, Chetta P, Schnitzer R, Botesteanu DA, Reiser C, Kornigg S, Knesl P. Discovery of potent and selective HER2 inhibitors with efficacy against HER2 exon 20 insertion-driven tumors, which preserve wild-type EGFR signaling. Nat Cancer. 2022;3(7):821–36. https://doi.org/10.1038/s43018-022-00412-y.

Article  PubMed  CAS  Google Scholar 

Ohori M, Kinoshita T, Yoshimura S, Warizaya M, Nakajima H, Miyake H. Role of a cysteine residue in the active site of ERK and the MAPKK family. Biochem Biophys Res Commun. 2007;353(3):633–7. https://doi.org/10.1016/J.BBRC.2006.12.083.

Article  PubMed  CAS  Google Scholar 

Rao S, Gurbani D, Du G, Everley RA, Browne CM, Chaikuad A, Tan L, Schröder M, Gondi S, Ficarro SB, Sim T. Leveraging compound promiscuity to identify targetable Cysteines within the Kinome. Cell Chem Biol. 2019;26(6):818–29.

PubMed  PubMed Central  CAS 

Comments (0)

No login
gif