Colorectal cancer. (n.d.). Retrieved November 12, 2024, from https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer
Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging therapeutic strategies to overcome drug resistance in cancer cells. Cancers. 2024;16(13):2478. https://doi.org/10.3390/CANCERS16132478.
Article PubMed PubMed Central CAS Google Scholar
Ashique S, Bhowmick M, Pal R, Khatoon H, Kumar P, Sharma H, Garg A, Kumar S, Das U. Multi drug resistance in colorectal cancer-approaches to overcome, advancements and future success. Adv Cancer Biol Metastas. 2024;1(10):100114. https://doi.org/10.1016/J.ADCANC.2024.100114.
Hlavata I, Mohelnikova-Duchonova B, Vaclavikova R, Liska V, Pitule P, Novak P, Bruha J, Vycital O, Holubec L, Treska V, Vodicka P. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis. 2012;27(2):187–96. https://doi.org/10.1093/MUTAGE/GER075.
Article PubMed CAS Google Scholar
Fleming-de-Moraes CD, Rocha MR, Tessmann JW, de Araujo WM, Morgado-Diaz JA. Crosstalk between PI3K/Akt and Wnt/β-catenin pathways promote colorectal cancer progression regardless of mutational status. Cancer Biol Ther. 2022;23(1):1–13. https://doi.org/10.1080/15384047.2022.2108690.
Article PubMed PubMed Central CAS Google Scholar
Zhu Y, Li X. Advances of Wnt signalling pathway in colorectal cancer. Cells. 2023;12(3):447. https://doi.org/10.3390/CELLS12030447.
Article PubMed PubMed Central CAS Google Scholar
Leiphrakpam PD, Are C. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment. Int J Mol Sci. 2024;25(6):3178. https://doi.org/10.3390/IJMS25063178.
Article PubMed PubMed Central CAS Google Scholar
Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. Mol Biomed. 2025;6(1):1–22. https://doi.org/10.1186/S43556-024-00239-2.
Bauer RA. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Discov Today. 2015;20(9):1061–73. https://doi.org/10.1016/J.DRUDIS.2015.05.005.
Article PubMed CAS Google Scholar
Dungo RT, Keating GM. Afatinib: first global approval. Drugs. 2013;73(13):1503–15. https://doi.org/10.1007/S40265-013-0111-6.
Article PubMed CAS Google Scholar
Davids MS, Brown JR. Ibrutinib: a first in class covalent inhibitor of Bruton’s Tyrosine Kinase. Future Oncol. 2014;10(6):957–67. https://doi.org/10.2217/FON.14.51.
Article PubMed CAS Google Scholar
Bjij I, Olotu FA, Agoni C, Adeniji E, Khan S, El Rashedy A, Cherqaoui D, Soliman ME. Covalent Inhibition in drug discovery: filling the void in literature. Curr Top Med Chem. 2018;18(13):1135–45. https://doi.org/10.2174/1568026618666180731161438.
Article PubMed CAS Google Scholar
Aljoundi A, Bjij I, El Rashedy A, Journal, Protein MST and 2020, undefined. (n.d.). Covalent versus non-covalent enzyme inhibition: which route should we take? A justification of the good and bad from molecular modelling perspective. Springer. Retrieved fromhttps://doi.org/10.1007/s10930-020-09884-2&casa_token=dPP0Z32udHMAAAAA:NISYJVuJTYAHXjH80ciw9R79eY-_rIv4RIp1npt-xvKe24AheCkTUYUz7pgkuhy8_jzCAj0SAyftJ1hO9g
Khan S, Bjij I, Betz RM, Soliman MES. Reversible versus irreversible inhibition modes of ERK2: a comparative analysis for ERK2 protein kinase in cancer therapy. Future Med Chem. 2018;10(9):1003–15. https://doi.org/10.4155/FMC-2017-0275.
Article PubMed CAS Google Scholar
Khan S, Bjij I, Olotu FA, Agoni C, Adeniji E, Soliman MES. Covalent simulations of covalent/irreversible enzyme inhibition in drug discovery: a reliable technical protocol. Future Med Chem. 2018;10(19):2265–75. https://doi.org/10.4155/FMC-2017-0304.
Article PubMed CAS Google Scholar
Aljoundi A, Bjij I, El Rashedy A, Soliman MES. Covalent versus non-covalent enzyme inhibition: which route should we take? A justification of the good and bad from molecular modelling perspective. Protein J. 2020;39(2):97–105. https://doi.org/10.1007/S10930-020-09884-2.
Article PubMed CAS Google Scholar
Hameed MS, Cao H, Guo L, Zeng L, Ren Y. Advancements, challenges, and future frontiers in covalent inhibitors and covalent drugs: a review. Eur J Med Chem Rep. 2024;12:100217. https://doi.org/10.1016/J.EJMCR.2024.100217.
Awoonor-Williams E, Walsh AG, Rowley CN. Modeling covalent-modifier drugs. Biochim Biophys Acta (BBA) Proteins Proteom. 2017;1865(11):1664–75. https://doi.org/10.1016/J.BBAPAP.2017.05.009.
Gersch M, Kreuzer J, Sieber SA. Electrophilic natural products and their biological targets. Nat Prod Rep. 2012;29(6):659–82. https://doi.org/10.1039/C2NP20012K.
Article PubMed CAS Google Scholar
Hou X, Sun M, Bao T, Xie X, Wei F, Wang S. Recent advances in screening active components from natural products based on bioaffinity techniques. Acta Pharm Sinica B. 2020;10(10):1800–13. https://doi.org/10.1016/J.APSB.2020.04.016.
Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. Nucleus. 2022;65(3):399–411. https://doi.org/10.1007/S13237-022-00405-3.
HuHu M, Yan H, Li H, Feng Y, Sun W, Ren Y, Ma L, Zeng W, Huang F, Jiang Z, Dong H. Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma. Sci Rep. 2023;13(1):9569. https://doi.org/10.1038/s41598-023-36687-z.
Alegría-Arcos M, Barbosa T, Sepúlveda F, Combariza G, González J, Gil C, Martínez A, Ramírez D. Network pharmacology reveals multitarget mechanism of action of drugs to be repurposed for COVID-19. Front Pharmacol. 2022;17(13):952192. https://doi.org/10.3389/FPHAR.2022.952192/BIBTEX.
Hao T, Peng W, Wang Q, Wang B, Sun J. Reconstruction and application of Protein–Protein interaction network. Int J Mol Sci. 2016;17(6):907. https://doi.org/10.3390/IJMS17060907.
Article PubMed PubMed Central Google Scholar
Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I. Fundamentals of protein interaction network mapping. Mol Syst Biol. 2015;11(12):848. https://doi.org/10.15252/MSB.20156351.
Article PubMed PubMed Central Google Scholar
Zou JY, Chen QL, Luo XC, Damdinjav D, Abdelmohsen UR, Li HY, Battulga T, Chen HB, Wang YQ, Zhang JY. Natural products reverse cancer multidrug resistance. Front Pharmacol. 2024;8(15):1348076. https://doi.org/10.3389/FPHAR.2024.1348076.
Solca F, Dahl G, Zoephel A, Bader G, Sanderson M, Klein C, Kraemer O, Himmelsbach F, Haaksma E, Adolf GR. Target binding properties and cellular activity of Afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther. 2012;343(2):342–50. https://doi.org/10.1124/JPET.112.197756.
Article PubMed CAS Google Scholar
Wilding B, Scharn D, Böse D, Baum A, Santoro V, Chetta P, Schnitzer R, Botesteanu DA, Reiser C, Kornigg S, Knesl P. Discovery of potent and selective HER2 inhibitors with efficacy against HER2 exon 20 insertion-driven tumors, which preserve wild-type EGFR signaling. Nat Cancer. 2022;3(7):821–36. https://doi.org/10.1038/s43018-022-00412-y.
Article PubMed CAS Google Scholar
Ohori M, Kinoshita T, Yoshimura S, Warizaya M, Nakajima H, Miyake H. Role of a cysteine residue in the active site of ERK and the MAPKK family. Biochem Biophys Res Commun. 2007;353(3):633–7. https://doi.org/10.1016/J.BBRC.2006.12.083.
Article PubMed CAS Google Scholar
Rao S, Gurbani D, Du G, Everley RA, Browne CM, Chaikuad A, Tan L, Schröder M, Gondi S, Ficarro SB, Sim T. Leveraging compound promiscuity to identify targetable Cysteines within the Kinome. Cell Chem Biol. 2019;26(6):818–29.
Comments (0)