Targeting immune cells in tumor microenvironment in triple negative breast cancer therapy: future perspective to overcome doxorubicin resistance and toxicity

Wu Q, Tao X, Luo Y, Zheng S, Lin N, Xie X. A novel super-enhancer-related gene signature predicts prognosis and immune microenvironment for breast cancer. BMC Cancer. 2023;23:1–18.

PubMed  PubMed Central  Google Scholar 

Qiu P, Guo Q, Yao Q, Chen J, Lin J. Characterization of Exosome-Related Gene Risk Model to Evaluate the Tumor Immune Microenvironment and Predict Prognosis in Triple-Negative Breast Cancer. Front Immunol. 2021;12:1–16.

Google Scholar 

Fan Y, He S. The characteristics of tumor microenvironment in triple negative breast cancer. Cancer Manag Res. 2022;14:1–17.

PubMed  PubMed Central  Google Scholar 

Organization WH. Breast Cancer WHO. World Heal. Organ. 2023. p. 1–5.

Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell [Internet]. 2023;186:1708–28. Available from: https://doi.org/10.1016/j.cell.2023.01.040

Niu M, Valdes S, Naguib YW, Hursting SD, Cui Z. Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol Pharm. 2016;13:1833–42.

CAS  PubMed  PubMed Central  Google Scholar 

Wendong Y, Hengwu X, Yanhong C, Yingying X, Feng Z, Zeng W, et al. Mannose modified co-loaded zoledronic liposomes deplete M2-tumor-associated macrophages to enhance anti-tumor effect of doxorubicin on TNBC. J Drug Deliv Sci Technol. 2022;74:103551.

Google Scholar 

Lepland A, Malfanti A, Haljasorg U, Asciutto EK, Pickholz M, Bringas M, et al. Depletion of mannose receptor-positive tumor-associated macrophages via a peptide-targeted star-shaped polyglutamate inhibits breast cancer progression in mice. Cancer Res Commun. 2022;2:533–51.

CAS  PubMed  PubMed Central  Google Scholar 

Pang Y, Shi R, Chan L, Lu Y, Zhu D, Liu T, et al. The combination of the HDC1 inhibitor SAHA and doxorubicin has synergic efficacy in triple negative breast cancer in vivo. Pharmacol Res [Internet]. 2023;196:106926. Available from: https://www.sciencedirect.com/science/article/pii/S1043661823002827

Zhao Q, He X, Qin X, Liu Y, Jiang H, Wang J, et al. Enhanced therapeutic efficacy of combining losartan and chemo-immunotherapy for triple negative breast cancer. Front Immunol. 2022;13:1–13.

Google Scholar 

Camilio KA, Wang M-Y, Mauseth B, Waagene S, Kvalheim G, Rekdal Ø, et al. Combining the oncolytic peptide LTX-315 with doxorubicin demonstrates therapeutic potential in a triple-negative breast cancer model. Breast Cancer Res [Internet]. 2019;21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060385592&doi=10.1186%2Fs13058-018-1092-x&partnerID=40&md5=02bf454913c45daea8315e47316c5657

Lawal B, Wu ATH, Chen C-H, T.A G, Wu S-Y. Identification of INFG/STAT1/NOTCH3 as γ-Mangostin’s potential targets for overcoming doxorubicin resistance and reducing cancer-associated fibroblasts in triple-negative breast cancer. Biomed Pharmacother [Internet]. 2023;163:114800. Available from: https://www.sciencedirect.com/science/article/pii/S0753332223005905

Kim HR, Cho YS, Chung SW, Choi JU, Ko YG, Park SJ, et al. Caspase-3 mediated switch therapy of self-triggered and long-acting prodrugs for metastatic TNBC. J Control Release [Internet]. 2022;346:136–47. https://doi.org/10.1016/j.jconrel.2022.04.014.

Article  CAS  PubMed  Google Scholar 

Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology. 2015;82:142–52.

CAS  PubMed  Google Scholar 

Santana-Krímskaya SE, Franco-Molina MA, Zárate-Triviño DG, Prado-García H, Zapata-Benavides P, Torres-del-Muro F, et al. IMMUNEPOTENT CRP plus doxorubicin/cyclophosphamide chemotherapy remodel the tumor microenvironment in an air pouch triple-negative breast cancer murine model. Biomed Pharmacother [Internet]. 2020;126:110062. Available from: https://www.sciencedirect.com/science/article/pii/S0753332220302535

Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med. 2018;169:467–73.

PubMed  Google Scholar 

Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:1–13.

Google Scholar 

Loizides S, Constantinidou A. Triple negative breast cancer: Immunogenicity, tumor microenvironment, and immunotherapy. Front Genet. 2023;13:1–7.

Google Scholar 

Bou Zerdan M, Ghorayeb T, Saliba F, Allam S, Bou Zerdan M, Yaghi M, et al. Triple negative breast cancer: Updates on classification and treatment in 2021. Cancers (Basel). 2022;14:1–21.

Google Scholar 

Obidiro O, Battogtokh G, Akala EO. Triple negative breast cancer treatment options and limitations: Future outlook. Pharmaceutics. 2023;15:1796.

CAS  PubMed  PubMed Central  Google Scholar 

Nicoletto RE, Ofner CM. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol [Internet]. 2022;89:285–311. https://doi.org/10.1007/s00280-022-04400-y.

Article  CAS  PubMed  Google Scholar 

Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med [Internet]. 2023;93:101205. https://doi.org/10.1016/j.mam.2023.101205.

Article  CAS  PubMed  Google Scholar 

Waks A, Winer E. Breast cancer treatment: a review. JAMA. 2019;321:288–300.

CAS  PubMed  Google Scholar 

Sun Z, Zhou D, Yang J, Zhang D. Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio. 2022;12:221–30.

CAS  PubMed  Google Scholar 

Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol [Internet]. 2022;15:1–30. https://doi.org/10.1186/s13045-022-01341-0.

Article  CAS  Google Scholar 

Jarosz-Biej M, Kamińska N, Matuszczak S, Cichoń T, Pamuła-Piłat J, Czapla J, et al. M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS ONE. 2018;13:e0191012.

PubMed  PubMed Central  Google Scholar 

Bareche Y, Buisseret L, Gruosso T, Girard E, Venet D, Dupont F, et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: Towards an optimized treatment approach. J Natl Cancer Inst. 2020;112:708–19.

PubMed  Google Scholar 

Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, Nagini S, Rao DN, et al. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res [Internet]. 2020;153:104683. https://doi.org/10.1016/j.phrs.2020.104683.

Article  CAS  PubMed  Google Scholar 

Domínguez-Cejudo MA, Gil-Torralvo A, Cejuela M, Molina-Pinelo S, Salvador BJ. Targeting the tumor microenvironment in breast cancer: Prognostic and predictive significance and therapeutic opportunities. Int J Mol Sci. 2023;24:16771.

PubMed  PubMed Central  Google Scholar 

Shi R, Tang YQ, Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm. 2020;1:47–68.

PubMed  PubMed Central  Google Scholar 

Mehraj U, Dar AH, Wani NA, Mir MA. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol [Internet]. 2021;87:147–58. https://doi.org/10.1007/s00280-020-04222-w.

Article  PubMed  Google Scholar 

Scialla S, Hanafy MS, Wang JL, Genicio N, Costa Da Silva M, Costa M, et al. Targeted treatment of triple-negative-breast cancer through pH-triggered tumour associated macrophages using smart theranostic nanoformulations. Int J Pharm. 2023;632:122575.

CAS  PubMed  Google Scholar 

Song J, Xiao T, Li M, Jia Q. Tumor-associated macrophages: Potential therapeutic targets and diagnostic markers in cancer. Pathol - Res Pract [Internet]. 2023;249:154739. Available from: https://www.sciencedirect.com/science/article/pii/S0344033823004399

Paramanantham A, Jung EJ, Kim HJ, Jeong BK, Jung JM, Kim GS, et al. Doxorubicin-resistant tnbc cells exhibit rapid growth with cancer stem cell-like properties and emt phenotype, which can be transferred to parental cells through autocrine signaling. Int J Mol Sci. 2021;22:12438.

CAS  PubMed  PubMed Central  Google Scholar 

Arneth B. Tumor microenvironment. Medicina (B Aires). 2020;56:1–21.

Google Scholar 

Liu B, Huang J, Xiao J, Xu W, Zhang H, Yuan Y, et al. The Streptococcus virulence protein PepO triggers anti-tumor immune responses by reprograming tumor-associated macrophages in a mouse triple negative breast cancer model. Cell Biosci. 2023;13:198.

CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Najibi AJ, Sobral MC, Seo BR, Lee JY, Wu D, et al. Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Nat Commun [Internet]. 2020;11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095754965&doi=10.1038%2Fs41467-020-19540-z&partnerID=40&md5=51006c438122a11e0769542f279a37fc

Liu Y, Han J, Bo Y, Bhatta R, Wang H. Targeted delivery of liposomal chemoimmunotherapy for cancer treatment. Front Immunol [Internet]. 2022;13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141171051&doi=10.3389%2Ffimmu.2022.1010021&partnerID=40&md5=03ee779c19135c9e4690cdb90f113b79

Servin-Garrido RR, Ilhuicatzi-Alvarado D, de Jiménez-Chávez ÁJ, Moreno-Fierros L. Cry1Ac protoxin confers antitumor adjuvant effect in a triple-negative breast cancer mouse model by improving tumor immunity. Breast Cancer (Auckl). 2022;16:11782234211065154.

PubMed  PubMed Central  Google Scholar 

Arroyo-Crespo JJ, Armiñán A, Charbonnier D, Balzano-Nogueira L, Huertas-López F, Martí C, et al. Tumor microenvironment-targeted poly-L-glutamic acid-based combination conjugate for enhanced triple negative breast cancer treatment. Biomaterials [Internet]. 2018;186:8–21. Available from: https://www.sciencedirect.com/science/article/pii/S0142961218306604

Schmid P, Salgado R, Park YH, Muñoz-Couselo E, Kim SB, Sohn J, et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann Oncol [Internet]. 2020;31:569–81. Available from: https://www.sciencedirect.com/science/article/pii/S0923753420360324

D’Avanzo N, Torrieri G, Figueiredo P, Celia C, Paolino D, Correia A, et al. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int J Pharm [Internet]. 2021;597:120346. Available from: https://www.sciencedirect.com/science/article/pii/S0378517321001502

Zhai J, Gu X, Liu Y, Hu Y, Jiang Y, Zhang Z. Chemotherapeutic and targeted drugs-induced immunogenic cell death in cancer models and antitumor therapy: An update review. Front Pharmacol. 2023;14:1–15.

Google Scholar 

Yao D, Wang Y, Bian K, Zhang B, Wang D. A self-cascaded unimolecular prodrug for pH-responsive chemotherapy and tumor-detained photodynamic-immunotherapy of triple-negative breast cancer. Biomaterials. 2023;292:121920.

CAS  PubMed  Google Scholar 

Wang B, Chen J, Caserto JS, Wang X, Ma M. An in situ hydrogel-mediated chemo-immunometabolic cancer therapy. Nat Commun [Internet]. 2022;13. Available from:

Comments (0)

No login
gif