Wu Q, Tao X, Luo Y, Zheng S, Lin N, Xie X. A novel super-enhancer-related gene signature predicts prognosis and immune microenvironment for breast cancer. BMC Cancer. 2023;23:1–18.
PubMed PubMed Central Google Scholar
Qiu P, Guo Q, Yao Q, Chen J, Lin J. Characterization of Exosome-Related Gene Risk Model to Evaluate the Tumor Immune Microenvironment and Predict Prognosis in Triple-Negative Breast Cancer. Front Immunol. 2021;12:1–16.
Fan Y, He S. The characteristics of tumor microenvironment in triple negative breast cancer. Cancer Manag Res. 2022;14:1–17.
PubMed PubMed Central Google Scholar
Organization WH. Breast Cancer WHO. World Heal. Organ. 2023. p. 1–5.
Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell [Internet]. 2023;186:1708–28. Available from: https://doi.org/10.1016/j.cell.2023.01.040
Niu M, Valdes S, Naguib YW, Hursting SD, Cui Z. Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol Pharm. 2016;13:1833–42.
CAS PubMed PubMed Central Google Scholar
Wendong Y, Hengwu X, Yanhong C, Yingying X, Feng Z, Zeng W, et al. Mannose modified co-loaded zoledronic liposomes deplete M2-tumor-associated macrophages to enhance anti-tumor effect of doxorubicin on TNBC. J Drug Deliv Sci Technol. 2022;74:103551.
Lepland A, Malfanti A, Haljasorg U, Asciutto EK, Pickholz M, Bringas M, et al. Depletion of mannose receptor-positive tumor-associated macrophages via a peptide-targeted star-shaped polyglutamate inhibits breast cancer progression in mice. Cancer Res Commun. 2022;2:533–51.
CAS PubMed PubMed Central Google Scholar
Pang Y, Shi R, Chan L, Lu Y, Zhu D, Liu T, et al. The combination of the HDC1 inhibitor SAHA and doxorubicin has synergic efficacy in triple negative breast cancer in vivo. Pharmacol Res [Internet]. 2023;196:106926. Available from: https://www.sciencedirect.com/science/article/pii/S1043661823002827
Zhao Q, He X, Qin X, Liu Y, Jiang H, Wang J, et al. Enhanced therapeutic efficacy of combining losartan and chemo-immunotherapy for triple negative breast cancer. Front Immunol. 2022;13:1–13.
Camilio KA, Wang M-Y, Mauseth B, Waagene S, Kvalheim G, Rekdal Ø, et al. Combining the oncolytic peptide LTX-315 with doxorubicin demonstrates therapeutic potential in a triple-negative breast cancer model. Breast Cancer Res [Internet]. 2019;21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060385592&doi=10.1186%2Fs13058-018-1092-x&partnerID=40&md5=02bf454913c45daea8315e47316c5657
Lawal B, Wu ATH, Chen C-H, T.A G, Wu S-Y. Identification of INFG/STAT1/NOTCH3 as γ-Mangostin’s potential targets for overcoming doxorubicin resistance and reducing cancer-associated fibroblasts in triple-negative breast cancer. Biomed Pharmacother [Internet]. 2023;163:114800. Available from: https://www.sciencedirect.com/science/article/pii/S0753332223005905
Kim HR, Cho YS, Chung SW, Choi JU, Ko YG, Park SJ, et al. Caspase-3 mediated switch therapy of self-triggered and long-acting prodrugs for metastatic TNBC. J Control Release [Internet]. 2022;346:136–47. https://doi.org/10.1016/j.jconrel.2022.04.014.
Article CAS PubMed Google Scholar
Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology. 2015;82:142–52.
Santana-Krímskaya SE, Franco-Molina MA, Zárate-Triviño DG, Prado-García H, Zapata-Benavides P, Torres-del-Muro F, et al. IMMUNEPOTENT CRP plus doxorubicin/cyclophosphamide chemotherapy remodel the tumor microenvironment in an air pouch triple-negative breast cancer murine model. Biomed Pharmacother [Internet]. 2020;126:110062. Available from: https://www.sciencedirect.com/science/article/pii/S0753332220302535
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med. 2018;169:467–73.
Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:1–13.
Loizides S, Constantinidou A. Triple negative breast cancer: Immunogenicity, tumor microenvironment, and immunotherapy. Front Genet. 2023;13:1–7.
Bou Zerdan M, Ghorayeb T, Saliba F, Allam S, Bou Zerdan M, Yaghi M, et al. Triple negative breast cancer: Updates on classification and treatment in 2021. Cancers (Basel). 2022;14:1–21.
Obidiro O, Battogtokh G, Akala EO. Triple negative breast cancer treatment options and limitations: Future outlook. Pharmaceutics. 2023;15:1796.
CAS PubMed PubMed Central Google Scholar
Nicoletto RE, Ofner CM. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol [Internet]. 2022;89:285–311. https://doi.org/10.1007/s00280-022-04400-y.
Article CAS PubMed Google Scholar
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med [Internet]. 2023;93:101205. https://doi.org/10.1016/j.mam.2023.101205.
Article CAS PubMed Google Scholar
Waks A, Winer E. Breast cancer treatment: a review. JAMA. 2019;321:288–300.
Sun Z, Zhou D, Yang J, Zhang D. Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio. 2022;12:221–30.
Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol [Internet]. 2022;15:1–30. https://doi.org/10.1186/s13045-022-01341-0.
Jarosz-Biej M, Kamińska N, Matuszczak S, Cichoń T, Pamuła-Piłat J, Czapla J, et al. M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS ONE. 2018;13:e0191012.
PubMed PubMed Central Google Scholar
Bareche Y, Buisseret L, Gruosso T, Girard E, Venet D, Dupont F, et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: Towards an optimized treatment approach. J Natl Cancer Inst. 2020;112:708–19.
Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, Nagini S, Rao DN, et al. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res [Internet]. 2020;153:104683. https://doi.org/10.1016/j.phrs.2020.104683.
Article CAS PubMed Google Scholar
Domínguez-Cejudo MA, Gil-Torralvo A, Cejuela M, Molina-Pinelo S, Salvador BJ. Targeting the tumor microenvironment in breast cancer: Prognostic and predictive significance and therapeutic opportunities. Int J Mol Sci. 2023;24:16771.
PubMed PubMed Central Google Scholar
Shi R, Tang YQ, Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm. 2020;1:47–68.
PubMed PubMed Central Google Scholar
Mehraj U, Dar AH, Wani NA, Mir MA. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol [Internet]. 2021;87:147–58. https://doi.org/10.1007/s00280-020-04222-w.
Scialla S, Hanafy MS, Wang JL, Genicio N, Costa Da Silva M, Costa M, et al. Targeted treatment of triple-negative-breast cancer through pH-triggered tumour associated macrophages using smart theranostic nanoformulations. Int J Pharm. 2023;632:122575.
Song J, Xiao T, Li M, Jia Q. Tumor-associated macrophages: Potential therapeutic targets and diagnostic markers in cancer. Pathol - Res Pract [Internet]. 2023;249:154739. Available from: https://www.sciencedirect.com/science/article/pii/S0344033823004399
Paramanantham A, Jung EJ, Kim HJ, Jeong BK, Jung JM, Kim GS, et al. Doxorubicin-resistant tnbc cells exhibit rapid growth with cancer stem cell-like properties and emt phenotype, which can be transferred to parental cells through autocrine signaling. Int J Mol Sci. 2021;22:12438.
CAS PubMed PubMed Central Google Scholar
Arneth B. Tumor microenvironment. Medicina (B Aires). 2020;56:1–21.
Liu B, Huang J, Xiao J, Xu W, Zhang H, Yuan Y, et al. The Streptococcus virulence protein PepO triggers anti-tumor immune responses by reprograming tumor-associated macrophages in a mouse triple negative breast cancer model. Cell Biosci. 2023;13:198.
CAS PubMed PubMed Central Google Scholar
Wang H, Najibi AJ, Sobral MC, Seo BR, Lee JY, Wu D, et al. Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Nat Commun [Internet]. 2020;11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095754965&doi=10.1038%2Fs41467-020-19540-z&partnerID=40&md5=51006c438122a11e0769542f279a37fc
Liu Y, Han J, Bo Y, Bhatta R, Wang H. Targeted delivery of liposomal chemoimmunotherapy for cancer treatment. Front Immunol [Internet]. 2022;13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141171051&doi=10.3389%2Ffimmu.2022.1010021&partnerID=40&md5=03ee779c19135c9e4690cdb90f113b79
Servin-Garrido RR, Ilhuicatzi-Alvarado D, de Jiménez-Chávez ÁJ, Moreno-Fierros L. Cry1Ac protoxin confers antitumor adjuvant effect in a triple-negative breast cancer mouse model by improving tumor immunity. Breast Cancer (Auckl). 2022;16:11782234211065154.
PubMed PubMed Central Google Scholar
Arroyo-Crespo JJ, Armiñán A, Charbonnier D, Balzano-Nogueira L, Huertas-López F, Martí C, et al. Tumor microenvironment-targeted poly-L-glutamic acid-based combination conjugate for enhanced triple negative breast cancer treatment. Biomaterials [Internet]. 2018;186:8–21. Available from: https://www.sciencedirect.com/science/article/pii/S0142961218306604
Schmid P, Salgado R, Park YH, Muñoz-Couselo E, Kim SB, Sohn J, et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann Oncol [Internet]. 2020;31:569–81. Available from: https://www.sciencedirect.com/science/article/pii/S0923753420360324
D’Avanzo N, Torrieri G, Figueiredo P, Celia C, Paolino D, Correia A, et al. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int J Pharm [Internet]. 2021;597:120346. Available from: https://www.sciencedirect.com/science/article/pii/S0378517321001502
Zhai J, Gu X, Liu Y, Hu Y, Jiang Y, Zhang Z. Chemotherapeutic and targeted drugs-induced immunogenic cell death in cancer models and antitumor therapy: An update review. Front Pharmacol. 2023;14:1–15.
Yao D, Wang Y, Bian K, Zhang B, Wang D. A self-cascaded unimolecular prodrug for pH-responsive chemotherapy and tumor-detained photodynamic-immunotherapy of triple-negative breast cancer. Biomaterials. 2023;292:121920.
Wang B, Chen J, Caserto JS, Wang X, Ma M. An in situ hydrogel-mediated chemo-immunometabolic cancer therapy. Nat Commun [Internet]. 2022;13. Available from:
Comments (0)