From development to clinical success: the journey of established and next-generation BTK inhibitors

Rawlings DJ, Witte ON (1994) Bruton’s tyrosine kinase is a key regulator in B-cell development. Immunol Rev 138(1):105–119. https://doi.org/10.1111/j.1600-065X.1994.tb00849.x

Article  CAS  PubMed  Google Scholar 

Smith CI, Islam TC, Mattsson PT, Mohamed AJ, Nore BF, Vihinen M (2001) The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species, BioEssays News Rev. Mol Cell Dev Biol 23(5):436–446. https://doi.org/10.1002/bies.1062

Article  CAS  Google Scholar 

Wu H et al (2014) Discovery of a potent, covalent BTK inhibitor for B-cell lymphoma. ACS Chem Biol 9(5):1086–1091. https://doi.org/10.1021/cb4008524

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hagemann T., Kwan SP. (1993) A BstNI polymorphism at the BTK locus in Xq21.3 – Xq22 Hum Mol Genet. 2(12):2201. https://doi.org/10.1093/hmg/2.12.2201.

Vetrie D et al (1993) The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361(6409):226–233. https://doi.org/10.1038/361226a0

Article  CAS  PubMed  Google Scholar 

Bruton OC (1952) Agammaglobulinemia. Pediatrics 9(6):722–728. https://doi.org/10.1542/peds.9.6.722

Article  CAS  PubMed  Google Scholar 

Suri D, Rawat A, Singh S (2016) X-linked agammaglobulinemia. Indian J Pediatr 83(4):331–337. https://doi.org/10.1007/s12098-015-2024-8

Article  PubMed  Google Scholar 

Väliaho J, Smith CIE, Vihinen M (2006) BTKbase: the mutation database for X-linked agammaglobulinemia. Hum Mutat 27(12):1209–1217. https://doi.org/10.1002/humu.20410

Article  CAS  PubMed  Google Scholar 

Tsukada S et al (1993) Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72(2):279–290. https://doi.org/10.1016/0092-8674(93)90667-f

Article  CAS  PubMed  Google Scholar 

Riggs J, Howell K, Matechin B, Matlack R, Pennello A, Chiasson R (2003) X-chromosome-linked immune-deficient mice have B-1b cells. Immunology 108(4):440–451. https://doi.org/10.1046/j.1365-2567.2003.01624.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X et al (2011) Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol 12(5):416–424. https://doi.org/10.1038/ni.2015

Article  CAS  PubMed  Google Scholar 

Quek LS, Bolen J, Watson SP (1998) A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 8(20):1137-S1. https://doi.org/10.1016/S0960-9822(98)70471-3

Article  CAS  PubMed  Google Scholar 

Honda F et al (2012) The kinase Btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils. Nat Immunol 13(4):369–378. https://doi.org/10.1038/ni.2234

Article  CAS  PubMed  Google Scholar 

Genevier HC et al (1994) Expression of Bruton’s tyrosine kinase protein within the B cell lineage. Eur J Immunol 24(12):3100–3105. https://doi.org/10.1002/eji.1830241228

Article  CAS  PubMed  Google Scholar 

Katz FE et al (1994) Expression of the X-linked agammaglobulinemia gene, btk in B-cell acute lymphoblastic leukemia. Leukemia 8(4):574–577

CAS  PubMed  Google Scholar 

Brullo C, Villa C, Tasso B, Russo E, Spallarossa A (2021) Btk inhibitors: a medicinal chemistry and drug delivery perspective. Int J Mol Sci 22(14):7641. https://doi.org/10.3390/ijms22147641

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manji F, Puckrin R, Stewart DA (2021) Novel synthetic drugs for the treatment of non-Hodgkin lymphoma. Expert Opin Pharmacother 22(11):1417–1427. https://doi.org/10.1080/14656566.2021.1902988

Article  CAS  PubMed  Google Scholar 

Schmidt U, Boucheron N, Unger B, Ellmeier W (2004) The role of Tec family kinases in myeloid cells. Int Arch Allergy Immunol 134(1):65–78. https://doi.org/10.1159/000078339

Article  CAS  PubMed  Google Scholar 

Hyvönen M, Saraste M (1997) Structure of the PH domain and Btk motif from Bruton’s tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia. EMBO J 16(12):3396–3404. https://doi.org/10.1093/emboj/16.12.3396

Article  PubMed  PubMed Central  Google Scholar 

Várnai P, Rother KI, Balla T (1999) Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 274(16):10983–10989. https://doi.org/10.1074/jbc.274.16.10983

Article  PubMed  Google Scholar 

Kang SW et al (2001) PKCbeta modulates antigen receptor signaling via regulation of Btk membrane localization. EMBO J 20(20):5692–5702. https://doi.org/10.1093/emboj/20.20.5692

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vihinen M, Nilsson L, Smith CI (1994) Tec homology (TH) adjacent to the PH domain. FEBS Lett 350(2–3):263–265. https://doi.org/10.1016/0014-5793(94)00783-7

Article  CAS  PubMed  Google Scholar 

Park H et al (1996) Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 4(5):515–525. https://doi.org/10.1016/s1074-7613(00)80417-3

Article  CAS  PubMed  Google Scholar 

Wahl MI, Fluckiger AC, Kato RM, Park H, Witte ON, Rawlings DJ (1997) Phosphorylation of two regulatory tyrosine residues in the activation of Bruton’s tyrosine kinase via alternative receptors. Proc Natl Acad Sci U S A 94(21):11526–11533. https://doi.org/10.1073/pnas.94.21.11526

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan Z et al (2007) Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem 2(1):58–61. https://doi.org/10.1002/cmdc.200600221

Article  CAS  PubMed  Google Scholar 

Bender AT et al (2017) Ability of Bruton’s tyrosine kinase inhibitors to sequester Y551 and prevent phosphorylation determines potency for inhibition of Fc receptor but not B-cell receptor signaling. Mol Pharmacol 91(3):208–219. https://doi.org/10.1124/mol.116.107037

Article  CAS  PubMed  Google Scholar 

Mohamed AJ, Vargas L, Nore BF, Backesjo CM, Christensson B, Smith CI (2000) Nucleocytoplasmic shuttling of Bruton’s tyrosine kinase. J Biol Chem 275(51):40614–40619. https://doi.org/10.1074/jbc.M006952200

Article  CAS  PubMed  Google Scholar 

Li T, Rawlings DJ, Park H, Kato RM, Witte ON, Satterthwaite AB (1997) Constitutive membrane association potentiates activation of Bruton tyrosine kinase. Oncogene 15(12):1375–1383. https://doi.org/10.1038/sj.onc.1201308

Article  CAS  PubMed  Google Scholar 

Li Z, Wahl MI, Eguinoa A, Stephens LR, Hawkins PT, Witte ON (1997) Phosphatidylinositol 3-kinase-γ activates Bruton’s tyrosine kinase in concert with Src family kinases. Proc Natl Acad Sci U S A 94(25):13820–13825

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif