C. Xu, X. Qie, Z. Sun, J. Yang, H. Zhang, and A. B. C. Chen, “Transient luminous events and their relationship to lightning strokes over the Tibetan plateau and its comparison regions,” J. Geophys. Res.: Atmos. 128, e2022JD037292 (2023).
C.-L. Kuo, T.-Y. Huang, C.-M. Hsu, M. Sato, L.-C. Lee, and N.-H. Lin, “Resolving elve, halo and sprite halo images at 10,000 fps in the Taiwan 2020 campaign,” Atmosphere 12 (8), 1000 (2021).
A. Huang, G. Lu, J. Yue, W. Lyons, F. Lucena, F. Lyu, S. A. Cummer, W. Zhang, L. Xu, X. Xue, and S. Xu, “Observations of red sprites above Hurricane Matthew,” Geophys. Rev. Lett. 45, 13 (2018).
V. P. Pasko, Y. Yair, and C. L. Kuo, “Lightning related transient luminous events at high altitude in the Earth’s atmosphere: Phenomenology, mechanisms and effects,” Space Sci. Rev. 168 (1), 475–516 (2012).
H. C. Stenbaek-Nielsen, R. Haaland, M. G. McHarg, B. A. Hensley, and T. Kanmae, “Sprite initiation altitude measured by triangulation,” J. Geophys. Res.: Space Phys. 115 (A8), E12 (2010).
A. Jehl, T. Farges, and E. Blanc, “Color pictures of sprites from non-dedicated observation on board the International Space Station,” J. Geophys. Res.: Space Phys. 118, 454–461 (2013).
V. P. Pasko, J. Qin, and S. Celestin, “Toward better understanding of sprite streamers: Initiation, morphology, and polarity asymmetry,” Surv. Geophys. 34 (6), 797–830 (2013).
J. Qin, S. Celestin, V. P. Pasko, S. A. Cummer, M. G. McHarg, and H. C. Stenbaek-Nielsen, “Mechanism of column and carrot sprites derived from optical and radio observations,” Geophys. Rev. Lett. 40 (17), 4777–4782 (2013).
T. Kanmae, H. C. Stenbaek-Nielsen, M. G. McHarg, and R. K. Haaland, “Diameter-speed relation of sprite streamers,” J. Phys. D: Appl. Phys. 45 (27), 275203 (2012).
A. Malagon-Romero, J. Teunissen, H. C. Stenbaek-Nielsen, M. G. McHarg, U. Ebert, and A. Luque, “On the emergence mechanism of carrot sprites,” Geophys. Rev. Lett. 47 (2020).
M. Singh, P. K. Sharma, and P. P. Pathak, “Radiation phenomenon due to streamers of sprites,” J. Electromag. Anal. Appl. 14 (3), 31–37 (2022).
V. Tarasenko, N. Vinogradov, E. Baksht, and D. Sorokin, “Ionization waves, propagating in opposite directions, as in red sprites,” J. Atmos. Sci. Res. 5 (4), 26–36 (2022).
E. K. Baksht, N. P. Vinogradov, and V. F. Tarasenko, “Generation of streamers in an inhomogeneous electric field under low air pressure,” Atmos. Ocean. Opt. 35 (S1), S159–S164 (2022).
V. F. Tarasenko, E. Kh. Baksht, V. A. Panarin, and N. P. Vinogradov, " Streamers initiated by capacitive discharge at air pressures of 0.2–6 Torr,” Fiz. Plazmy 49 (6), 590–599 (2023). https://doi.org/10.31857/S0367292123700245
D. A. Sorokin, V. F. Tarasenko, E. K. Baksht, and N. P. Vinogradov, “Analogs of columnar sprites initiated in low-pressure air and nitrogen,” Phys. Plasmas 30, 083515 (2023).
A. Luque, H. C. Stenbaek-Nielsen, M. G. McHarg, and R. K. Haaland, “Sprite beads and glows arising from the attachment instability in streamer channels,” J. Geophys. Res.: Space Phys. 121, 2431–2449 (2016).
H. C. Stenbaek-Nielsen, M. G. McHarg, R. Haaland, and A. Luque, “Optical spectra of small-scale sprite features observed at 10.000 fps,” J. Geophys. Res.: Atmos. 125, e2020JD033170 (2020).
A. Robledo-Martinez, A. Garcia-Villarreal, and H. Sobral, “Comparison between low-pressure laboratory discharges and atmospheric sprites,” J. Geophys. Res.: Space Phys. 122, 948–962 (2017).
Y. Goto, Y. Ohba, and K. Narita, “Optical and spectral characteristics of low pressure air discharges as sprite models,” J. Atmos. Electr. 27 (2), 105–112 (2007).
E. A. Sosnin, N. Yu. Babaeva, V. Yu. Kozhevnikov, A. V. Kozyrev, G. V. Naidis, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “Modeling of transient luminous events in Earth’s middle atmosphere with apokamp discharge, “ Phys.-Uspekhi 64 (2), 191–210 (2021).
T. Kanmae, H. C. Stenbaek-Nielsen, M. G. McHarg, and R. K. Haaland, “Observation of blue sprite spectra at 10,000 fps,” Geophys. Rev. Lett. 37, L13808 (2010).
A. I. Shishpanov, D. O. Ivanov, and S. A. Kalinin, “Collision of ionization waves in long discharge tubes,” Plasma Res. Express 1, 025004 (2019).
N. Britun, M. Gaillard, A. Ricard, Y. M. Kim, K. S. Kim, and J. G. Han, “Determination of the vibrational, rotational and electron temperatures in N2 and Ar-N2 RF discharge,” J. Phys. D: Appl. Phys. 40, 1022–1029 (2007).
P. Paris, M. Aints, F. Valk, T. Plank, A. Haljaste, K. V. Kozlov, and H.-E. Wagner, “Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas,” J. Phys. D: Appl. Phys. 38, 3894–3899 (2005).
C. O. Laux, Radiation and Nonequilibrium Collisional-Radiative Models, Physico-Chemical of High Enthalpy and Plasma Flows. Lecture (von Karman Institute, Belgium, 2002).
S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, and A. Yu. Starikovskii, “Time-resolved emission spectroscopy and its applications to the study of pulsed nanosecond high-voltage discharges,” Proc. SPIE—Int. Soc. Opt. Eng. 2002 (4460), 63–72.
Comments (0)