Bright Areas of Luminescence in Low-Pressure Air when Diffuse Plasma Jets Meet

C. Xu, X. Qie, Z. Sun, J. Yang, H. Zhang, and A. B. C. Chen, “Transient luminous events and their relationship to lightning strokes over the Tibetan plateau and its comparison regions,” J. Geophys. Res.: Atmos. 128, e2022JD037292 (2023).

C.-L. Kuo, T.-Y. Huang, C.-M. Hsu, M. Sato, L.-C. Lee, and N.-H. Lin, “Resolving elve, halo and sprite halo images at 10,000 fps in the Taiwan 2020 campaign,” Atmosphere 12 (8), 1000 (2021).

Article  ADS  Google Scholar 

A. Huang, G. Lu, J. Yue, W. Lyons, F. Lucena, F. Lyu, S. A. Cummer, W. Zhang, L. Xu, X. Xue, and S. Xu, “Observations of red sprites above Hurricane Matthew,” Geophys. Rev. Lett. 45, 13 (2018).

Article  Google Scholar 

V. P. Pasko, Y. Yair, and C. L. Kuo, “Lightning related transient luminous events at high altitude in the Earth’s atmosphere: Phenomenology, mechanisms and effects,” Space Sci. Rev. 168 (1), 475–516 (2012).

Article  ADS  Google Scholar 

H. C. Stenbaek-Nielsen, R. Haaland, M. G. McHarg, B. A. Hensley, and T. Kanmae, “Sprite initiation altitude measured by triangulation,” J. Geophys. Res.: Space Phys. 115 (A8), E12 (2010).

Google Scholar 

A. Jehl, T. Farges, and E. Blanc, “Color pictures of sprites from non-dedicated observation on board the International Space Station,” J. Geophys. Res.: Space Phys. 118, 454–461 (2013).

Article  ADS  Google Scholar 

V. P. Pasko, J. Qin, and S. Celestin, “Toward better understanding of sprite streamers: Initiation, morphology, and polarity asymmetry,” Surv. Geophys. 34 (6), 797–830 (2013).

Article  ADS  Google Scholar 

J. Qin, S. Celestin, V. P. Pasko, S. A. Cummer, M. G. McHarg, and H. C. Stenbaek-Nielsen, “Mechanism of column and carrot sprites derived from optical and radio observations,” Geophys. Rev. Lett. 40 (17), 4777–4782 (2013).

Article  ADS  Google Scholar 

T. Kanmae, H. C. Stenbaek-Nielsen, M. G. McHarg, and R. K. Haaland, “Diameter-speed relation of sprite streamers,” J. Phys. D: Appl. Phys. 45 (27), 275203 (2012).

Article  Google Scholar 

A. Malagon-Romero, J. Teunissen, H. C. Stenbaek-Nielsen, M. G. McHarg, U. Ebert, and A. Luque, “On the emergence mechanism of carrot sprites,” Geophys. Rev. Lett. 47 (2020).

M. Singh, P. K. Sharma, and P. P. Pathak, “Radiation phenomenon due to streamers of sprites,” J. Electromag. Anal. Appl. 14 (3), 31–37 (2022).

Google Scholar 

V. Tarasenko, N. Vinogradov, E. Baksht, and D. Sorokin, “Ionization waves, propagating in opposite directions, as in red sprites,” J. Atmos. Sci. Res. 5 (4), 26–36 (2022).

Article  Google Scholar 

E. K. Baksht, N. P. Vinogradov, and V. F. Tarasenko, “Generation of streamers in an inhomogeneous electric field under low air pressure,” Atmos. Ocean. Opt. 35 (S1), S159–S164 (2022).

Article  ADS  Google Scholar 

V. F. Tarasenko, E. Kh. Baksht, V. A. Panarin, and N. P. Vinogradov, " Streamers initiated by capacitive discharge at air pressures of 0.2–6 Torr,” Fiz. Plazmy 49 (6), 590–599 (2023). https://doi.org/10.31857/S0367292123700245

Article  Google Scholar 

D. A. Sorokin, V. F. Tarasenko, E. K. Baksht, and N. P. Vinogradov, “Analogs of columnar sprites initiated in low-pressure air and nitrogen,” Phys. Plasmas 30, 083515 (2023).

Article  ADS  Google Scholar 

A. Luque, H. C. Stenbaek-Nielsen, M. G. McHarg, and R. K. Haaland, “Sprite beads and glows arising from the attachment instability in streamer channels,” J. Geophys. Res.: Space Phys. 121, 2431–2449 (2016).

Article  ADS  Google Scholar 

H. C. Stenbaek-Nielsen, M. G. McHarg, R. Haaland, and A. Luque, “Optical spectra of small-scale sprite features observed at 10.000 fps,” J. Geophys. Res.: Atmos. 125, e2020JD033170 (2020).

A. Robledo-Martinez, A. Garcia-Villarreal, and H. Sobral, “Comparison between low-pressure laboratory discharges and atmospheric sprites,” J. Geophys. Res.: Space Phys. 122, 948–962 (2017).

Article  ADS  Google Scholar 

Y. Goto, Y. Ohba, and K. Narita, “Optical and spectral characteristics of low pressure air discharges as sprite models,” J. Atmos. Electr. 27 (2), 105–112 (2007).

Google Scholar 

E. A. Sosnin, N. Yu. Babaeva, V. Yu. Kozhevnikov, A. V. Kozyrev, G. V. Naidis, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “Modeling of transient luminous events in Earth’s middle atmosphere with apokamp discharge, “ Phys.-Uspekhi 64 (2), 191–210 (2021).

Article  ADS  Google Scholar 

T. Kanmae, H. C. Stenbaek-Nielsen, M. G. McHarg, and R. K. Haaland, “Observation of blue sprite spectra at 10,000 fps,” Geophys. Rev. Lett. 37, L13808 (2010).

A. I. Shishpanov, D. O. Ivanov, and S. A. Kalinin, “Collision of ionization waves in long discharge tubes,” Plasma Res. Express 1, 025004 (2019).

Article  ADS  Google Scholar 

N. Britun, M. Gaillard, A. Ricard, Y. M. Kim, K. S. Kim, and J. G. Han, “Determination of the vibrational, rotational and electron temperatures in N2 and Ar-N2 RF discharge,” J. Phys. D: Appl. Phys. 40, 1022–1029 (2007).

Article  ADS  Google Scholar 

P. Paris, M. Aints, F. Valk, T. Plank, A. Haljaste, K. V. Kozlov, and H.-E. Wagner, “Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas,” J. Phys. D: Appl. Phys. 38, 3894–3899 (2005).

Article  ADS  Google Scholar 

C. O. Laux, Radiation and Nonequilibrium Collisional-Radiative Models, Physico-Chemical of High Enthalpy and Plasma Flows. Lecture (von Karman Institute, Belgium, 2002).

S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, and A. Yu. Starikovskii, “Time-resolved emission spectroscopy and its applications to the study of pulsed nanosecond high-voltage discharges,” Proc. SPIE—Int. Soc. Opt. Eng. 2002 (4460), 63–72.

Comments (0)

No login
gif