Pulsation artifact reduction using compressed sensitivity encoding in Gd-EOB-DTPA contrast-enhanced magnetic resonance imaging

Ba-Ssalamah A, Uffmann M, Saini S, et al. Clinical value of MRI liver-specific contrast agents: a tailored examination for a confident non-invasive diagnosis of focal liver lesions. Eur Radiol. 2009. https://doi.org/10.1007/s00330-008-1172-x.

Article  PubMed  Google Scholar 

Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–62.

Article  CAS  PubMed  Google Scholar 

Kim MJ, Mitchell DG, Ito K, et al. Hepatic MR imaging: Comparison of 2D and 3D gradient echo techniques. Abdom Imaging. 2001;26:269–76.

Article  CAS  PubMed  Google Scholar 

Donato H, França M, Candelária I, et al. Liver MRI: From basic protocol to advanced techniques. Eur J Radiol. 2017;93:30–9.

Article  PubMed  Google Scholar 

Ihara K, Onoda H, Tanabe M, et al. Breath-hold high-resolution T1-weighted gradient echo liver MR imaging with compressed Sensing obtained during the gadoxetic acid-enhanced hepatobiliary phase: image quality and lesion visibility compared with a standard T1-weighted sequence. Magn Reson Med Sci. 2024;23:146–52.

Article  CAS  PubMed  Google Scholar 

Kawai N, Goshima S, Noda Y, et al. Gadoxetic acid-enhanced dynamic magnetic resonance imaging using optimized integrated combination of compressed sensing and parallel imaging technique. Magn Reson Imaging. 2019;57:111–7.

Article  CAS  PubMed  Google Scholar 

Yoshimaru D, Araki Y, Matsuda C, et al. Evaluation of liver tumor identification rate of volumetric-interpolated breath-hold images using the compressed sensing method and qualitative evaluation of tumor contrast effect via visual evaluation. Quant Imaging Med Surg. 2022;12:2649–57.

Article  PubMed  PubMed Central  Google Scholar 

Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95.

Article  PubMed  Google Scholar 

Boyarko AC, Dillman JR, Tkach JA, et al. Comparison of compressed SENSE and SENSE for quantitative liver MRI in children and young adults. Abdom Radiol. 2021;46:4567–75.

Article  Google Scholar 

Geerts-Ossevoort L, Elwin De Weerdt, Duijndam A, et al. Compressed SENSE Speed done right. Every time. Philips MR Clinical application. 2018.

Jaspan ON, Fleysher R, Lipton ML. Compressed sensing MRI: A review of the clinical literature. Br J Radiol. 2015;88:20150487.

Article  PubMed  PubMed Central  Google Scholar 

Yang ASC, Kretzler M, Sudarski S, et al. Sparse reconstruction techniques in magnetic resonance imaging. Invest Radiol. 2016. https://doi.org/10.1097/RLI.0000000000000274.

Article  PubMed  PubMed Central  Google Scholar 

Xiang Z, Ai Z, Liang J, et al. Evaluation of regional variability and measurement reproducibility of intravoxel incoherent motion diffusion weighted imaging using a cardiac stationary phase based ECG trigger method. Biomed Res Int. 2018. https://doi.org/10.1155/2018/4604218.

Article  PubMed  PubMed Central  Google Scholar 

Metens T, Absil J, Denolin V, et al. Liver apparent diffusion coefficient repeatability with individually predetermined optimal cardiac timing and artifact elimination by signal filtering. J Magn Reson Imaging. 2016;43:1100–10.

Article  PubMed  Google Scholar 

Wetscherek A, Stieltjes B, Laun FB. Flow-compensated intravoxel incoherent motion diffusion imaging. Magn Reson Med. 2015;74:410–9.

Article  PubMed  Google Scholar 

Nakamura Y, Higaki T, Nishihara T, et al. Pseudo-random trajectory scanning suppresses motion artifacts on gadoxetic acid-enhanced hepatobiliary-phase magnetic resonance images. Magn Reson Med Sci. 2020;19:21–8.

Article  PubMed  Google Scholar 

Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. 2013; Available from: http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/

Cho SJ, Choi YJ, Chung SR, et al. High-resolution MRI using compressed sensing-sensitivity encoding (CS-SENSE) for patients with suspected neurovascular compression syndrome: Comparison with the conventional SENSE parallel acquisition technique. Clin Radiol. 2019;74(817):e9-817.e14.

Google Scholar 

Sartoretti T, Reischauer C, Sartoretti E, et al. Common artefacts encountered on images acquired with combined compressed sensing and SENSE. Insights Imaging. 2018. https://doi.org/10.1007/s13244-018-0668-4.

Article  PubMed  PubMed Central  Google Scholar 

Choi MH, Kim B, Han D, et al. Compressed sensing for breath-hold high-resolution hepatobiliary phase imaging: Image noise, artifact, biliary anatomy evaluation, and focal lesion detection in comparison with parallel imaging. Abdom Radiol. 2022;47:133–42.

Article  Google Scholar 

Comments (0)

No login
gif