Briggs KK, Bolia IK (2018) Hip arthroscopy: an evidence-based approach. Lancet Lond Engl 391:2189–2190. https://doi.org/10.1016/S0140-6736(18)31218-2
Shetty VD, Villar RN, Ilizaliturri VM (2007) Hip arthroscopy: current concepts and review of literature * Commentary. Br J Sports Med 41:64–68. https://doi.org/10.1136/bjsm.2006.027755
Rodriguez-Paz JM, Kennedy M, Salas E, Wu AW, Sexton JB, Hunt EA, Pronovost PJ (2009) Beyond “see one, do one, teach one”: toward a different training paradigm. Postgrad Med J 85:244–249. https://doi.org/10.1136/qshc.2007.023903
Article CAS PubMed Google Scholar
Pedowitz RA, Esch J, Snyder S (2002) Evaluation of a virtual reality simulator for arthroscopy skills development. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 18:E29. https://doi.org/10.1053/jars.2002.33791
Tay C, Khajuria A, Gupte C (2014) Simulation training: a systematic review of simulation in arthroscopy and proposal of a new competency-based training framework. Int J Surg Lond Engl 12:626–633. https://doi.org/10.1016/j.ijsu.2014.04.005
Frank RM, Wang KC, Davey A, Cotter EJ, Cole BJ, Romeo AA, Bush-Joseph CA, Bach BR, Verma NN (2018) Utility of modern arthroscopic simulator training models: a meta-analysis and updated systematic review. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 34:1650–1677. https://doi.org/10.1016/j.arthro.2017.10.048
Rebolledo BJ, Hammann-Scala J, Leali A, Ranawat AS (2015) Arthroscopy skills development with a surgical simulator: a comparative study in orthopaedic surgery residents. Am J Sports Med 43:1526–1529. https://doi.org/10.1177/0363546515574064
Fucentese SF, Rahm S, Wieser K, Spillmann J, Harders M, Koch PP (2015) Evaluation of a virtual-reality-based simulator using passive haptic feedback for knee arthroscopy. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 23:1077–1085. https://doi.org/10.1007/s00167-014-2888-6
Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, Wolf M (2014) A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85(Pt 1):6–27. https://doi.org/10.1016/j.neuroimage.2013.05.004
Boas DA, Elwell CE, Ferrari M, Taga G (2014) Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage 85(Pt 1):1–5. https://doi.org/10.1016/j.neuroimage.2013.11.033
Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, Yang G-Z (2011) Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. NeuroImage 54:2922–2936. https://doi.org/10.1016/j.neuroimage.2010.10.058
Fu Y, Walia P, Schwaitzberg SD, Intes X, De S, Dutta A, Cavuoto L (2023) Changes in functional neuroimaging measures as novices gain proficiency on the fundamentals of laparoscopic surgery suturing task. Neurophotonics 10:023521. https://doi.org/10.1117/1.NPh.10.2.023521
Article PubMed PubMed Central Google Scholar
Shetty K, Leff DR, Orihuela-Espina F, Yang G-Z, Darzi A (2016) Persistent prefrontal engagement despite improvements in laparoscopic technical skill. JAMA Surg 151:682. https://doi.org/10.1001/jamasurg.2016.0050
Nemani A, Yücel MA, Kruger U, Gee DW, Cooper C, Schwaitzberg SD et al (2018) Assessing bimanual motor skills with optical neuroimaging. Sci Adv 4(10):eaat3807. https://doi.org/10.1126/sciadv.aat3807
Article PubMed PubMed Central Google Scholar
Bishop ME, Ode GE, Hurwit DJ, Zmugg S, Rauck RC, Nguyen JT, Ranawat AS (2021) The arthroscopic surgery skill evaluation tool global rating scale is a valid and reliable adjunct measure of performance on a virtual reality simulator for hip arthroscopy. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 37:1856–1866. https://doi.org/10.1016/j.arthro.2021.01.046
Garfjeld Roberts P, Guyver P, Baldwin M, Akhtar K, Alvand A, Price AJ, Rees JL (2017) Validation of the updated ArthroS simulator: face and construct validity of a passive haptic virtual reality simulator with novel performance metrics. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 25:616–625. https://doi.org/10.1007/s00167-016-4114-1
Tofte JN, Westerlind BO, Martin KD, Guetschow BL, Uribe-Echevarria B, Rungprai C, Phisitkul P (2017) Knee, shoulder, and fundamentals of arthroscopic surgery training: validation of a virtual arthroscopy simulator. Arthrosc J Arthrosc Relat Surg 33:641–646. https://doi.org/10.1016/j.arthro.2016.09.014
Kelly AMC, Garavan H (2005) Human functional neuroimaging of brain changes associated with practice. Cereb Cortex N Y N 15:1089–1102. https://doi.org/10.1093/cercor/bhi005
Chein JM, Schneider W (2005) Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Cogn Brain Res 25:607–623. https://doi.org/10.1016/j.cogbrainres.2005.08.013
Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Pütz B (1998) Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci Off J Soc Neurosci 18:1827–1840. https://doi.org/10.1523/JNEUROSCI.18-05-01827.1998
Ohuchida K, Kenmotsu H, Yamamoto A et al (2009) The frontal cortex is activated during learning of endoscopic procedures. Surg Endosc 23:2296–2301. https://doi.org/10.1007/s00464-008-0316-z
Walia P, Fu Y, Schwaitzberg SD, Intes X, De S, Dutta A, Cavuoto L (2023) Portable neuroimaging differentiates novices from those with experience for the Fundamentals of Laparoscopic Surgery (FLS) suturing with intracorporeal knot tying task. Surg Endosc 37:5576–5582. https://doi.org/10.1007/s00464-022-09727-4
Grantcharov TP, Bardram L, Funch-Jensen P, Rosenberg J (2003) Learning curves and impact of previous operative experience on performance on a virtual reality simulator to test laparoscopic surgical skills. Am J Surg 185:146–149. https://doi.org/10.1016/s0002-9610(02)01213-8
van Mier H, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE (1998) Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol 80:2177–2199. https://doi.org/10.1152/jn.1998.80.4.2177
Seitz RJ, Roland E, Bohm C, Greitz T, Stone-Elander S (1990) Motor learning in man: a positron emission tomographic study. NeuroReport 1:57–60. https://doi.org/10.1097/00001756-199009000-00016
Article CAS PubMed Google Scholar
Muellbacher W, Ziemann U, Wissel J, Dang N, Kofler M, Facchini S, Boroojerdi B, Poewe W, Hallett M (2002) Early consolidation in human primary motor cortex. Nature 415:640–644. https://doi.org/10.1038/nature712
Article CAS PubMed Google Scholar
Wilkinson L, Teo JT, Obeso I, Rothwell JC, Jahanshahi M (2010) The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: evidence from theta burst magnetic stimulation. J Cogn Neurosci 22:427–436. https://doi.org/10.1162/jocn.2009.21208
Cona G, Semenza C (2017) Supplementary motor area as key structure for domain-general sequence processing: a unified account. Neurosci Biobehav Rev 72:28–42. https://doi.org/10.1016/j.neubiorev.2016.10.033
Sanes JN (2003) Neocortical mechanisms in motor learning. Curr Opin Neurobiol 13:225–231. https://doi.org/10.1016/s0959-4388(03)00046-1
Article CAS PubMed Google Scholar
Kamat A, Makled B, Norfleet J, Schwaitzberg SD, Intes X, De S, Dutta A (2022) Directed information flow during laparoscopic surgical skill acquisition dissociated skill level and medical simulation technology. NPJ Sci Learn 7:19. https://doi.org/10.1038/s41539-022-00138-7
Article PubMed PubMed Central Google Scholar
Subramanian D, Alers A, Sommer MA (2019) Corollary discharge for action and cognition. Biol Psychiatry Cogn Neurosci Neuroimaging 4:782–790. https://doi.org/10.1016/j.bpsc.2019.05.010
Comments (0)