Comparative Analysis of Maize Gynogenesis Gene Mutations

Coe, E.H., A line of maize with high haploid frequency, Am. Nat., 1959, vol. 93, no. 873, pp. 381—382. https://doi.org/10.1086/282098

Article  Google Scholar 

Gilles, L.M., Khaled, A., Laffaire, J.B., et al., Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize, EMBO J., 2017, vol. 36, no. 6, pp. 707—717. https://doi.org/10.15252/embj.201796603

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tyrnov, V.S. and Zavalishina, A.N., High-frequency induction of matroclinal haploids in maize, Dokl. Akad. Nauk SSSR, 1984, vol. 276, pp. 735—738.

Google Scholar 

Zavalishina, A.N. and Tyrnov, V.S., Induction of matroclinical haploidy in maize in vivo, Reproductive Biology and Plant Breeding (Proc. XIIIth EUCARPIA Congr.), Leningrad, 1992, pp. 221—222.

Enaleeva, N.Kh., Tyrnov, V.S., Selivanova, L.P., and Zavalishina, A.N., Single fertilization and the problem of haploidy induction in maize, Dokl. Biol. Sci., 1997, vol. 353, pp. 405—407.

CAS  Google Scholar 

Gutorova, O.V., Apanasova, N.V., and Yudakova, O.I., Creation of genetically marked maize lines with inherited and induced types of parthenogenesis, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2016, vol. 18, no. 2 (2), pp. 341—344.

Takahashi, T., Mori, T., Ueda, K., et al., The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants, Development, 2018, vol. 45, no. 23. https://doi.org/10.1242/dev.170076

Cyprys, P., Lindemeier, M., and Sprunck, S., Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins, Nat. Plants, 2019, vol. 5, pp. 253—257. https://doi.org/10.1038/s41477-019-0382-3

Article  CAS  PubMed  Google Scholar 

Zhong, Y., Liu, C., Qi, X., et al., Mutation of ZmDMP enhances haploid induction in maize, Nat. Plants, 2019, vol. 5, pp. 575—580. https://doi.org/10.1038/s41477-019-0443-7

Article  PubMed  Google Scholar 

Chalyk, S., Baumann, A., Daniel, G., et al., Aneuploidy as a possible cause of haploid-induction in maize, Maize Genet. Coop. Newslett., 2003, vol. 77, pp. 29—30.

Google Scholar 

Zhang, Z.L., Qiu, F.Z., Liu, Y.Z., et al., Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.), Plant Cell Rep., 2008, vol. 27, pp. 1851—1860. https://doi.org/10.1007/s00299-008-0601-2

Article  CAS  PubMed  Google Scholar 

Qiu, F., Liang, Y., Li, Y., et al., Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize, Curr. Plant Biol., 2014, vol. 1, pp. 83—90. https://doi.org/10.1016/j.cpb.2014.04.001

Article  Google Scholar 

Kelliher, T., Starr, D., Wang, W., et al., Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize, Front. Plant Sci., 2016, vol. 7, pp. 1—11. https://doi.org/10.3389/fpls.2016.00414

Article  Google Scholar 

Ravi, M. and Chan, S.W.L., Haploid plants produced by centromere-mediated genome elimination, Nature, 2010, vol. 464, pp. 615—619. https://doi.org/10.1038/nature08842

Article  CAS  PubMed  Google Scholar 

Wang, S., Jin, W., and Wang, K., Centromere histone H3- and phospholipase-mediated haploid induction in plants, Plant Methods, 2019, vol. 15, p. 42. https://doi.org/10.1186/s13007-019-0429-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, H., Schrag, T.A., Peis, R., et al., The genetic basis of haploid induction in maize identified with a novel genome-wide association method, Genetics, 2016, vol. 202, pp. 1267—1276. https://doi.org/10.1534/genetics.115.184234

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tyrnov, V.S. and Enaleeva, N.Kh., Autonomous development of the embryo and endosperm in maize, Dokl. Acad. Nauk SSSR, 1983, vol. 272, pp. 722—725.

Google Scholar 

Apanasova, N.V. and Pavlov, N.A., New parthenogenetic lines of maize, Vavilovskiye chteniya (Vavilov Readings) (Proc. Int. Theor. Prakt. Conf., in Memoriam of 135th Anniversary of Academician N. I. Vavilov), Saratov, 2022, pp. 49—52. https://www.vavilovsar.ru/files/ckeditor/uploads/22-12-26/167204784-4/VCh2022%20SBORNIK.pdf.

Kolesova, A.Y. and Tyrnov, V.S., Embryological peculiarities of tetraploid parthenogenetic maize forms, Maize Genet. Coop. Newslett., 2012, vol. 85, pp. 65—66.

Google Scholar 

Volokhina, I., Gusev, Y., Moiseeva, Ye., et al., Gene expression in parthenogenic maize proembryos, Plants, 2021, vol. 10, no. 5. https://doi.org/10.3390/plants10050964

Apanasova, N.V. and Titovets, V.V., Cytoembriologic study of apomixis manifestations in maize line AT-3 after pollination, Byull. Bot. Sada Saratov. Gos. Univ., 2003, no. 2, pp. 194—197.

Tyrnov, V.S., Producing of parthenogenetic forms of maize, Maize Genet. Coop. Newslett., 1997, vol. 71, pp. 73—74.

Google Scholar 

Tyrnov, V.S., Smolkina, Y.V., and Titovets, V.V., Estimation of parthenogenesis frequency on the grounds of genetical and embryological data, Maize Genet. Coop. Newslett., 2001, vol. 75, pp. 56—57.

Google Scholar 

Moiseeva, E.M., Gusev, Yu.S., Gutorova, O.V., and Chumakov, M.I., Analysis of the Hap2/Gcs1, Gex2 gene expression in maize lines of Saratov breeding, Russ. J. Genet., 2023, vol. 59, no. 3, pp. 327—335. https://doi.org/10.1134/S1022795423030092

Article  Google Scholar 

Moiseeva, E.M., Fadeev, V.V., Krasova, Y.V., and Chumakov, M.I., Analysis of mutations of the maize genes of autonomous embryo- and endospermogenesis, Russ. J. Genet., 2023, vol. 59, no. 9, pp. 967—969. https://doi.org/10.1134/S1022795423090089

Article  CAS  Google Scholar 

Chumakov, M.I., Matroclinic haploidy and gamete interaction in maize (review), Russ. J. Genet., 2018, vol. 54, no. 10, pp. 1137—1141. https://doi.org/10.1134/S1022795418100058

Article  CAS  Google Scholar 

Liu, C., Li, X., Meng, D., et al., A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize, Mol. Plant, 2017, vol. 10, pp. 520—522. https://doi.org/10.1016/j.molp.2017.01.011

Article  CAS  PubMed  Google Scholar 

Tamura, K., Nei, M., and Kumar, S., Prospects for inferring very large phylogenies by using the neighbor-joining method, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 30, pp. 11030—11035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamura, K., Stecher, G., and Kumar, S., MEGA 11: molecular evolutionary genetics analysis version 11, Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 3022—3027. https://doi.org/10.1093/molbev/msab120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trentin, H.U., Frei, U.K., and Lübberstedt, T., Breeding maize maternal haploid inducers, Plants, 2020, vol. 9, no. 5, p. 614. https://doi.org/10.3390/plants90506

Article  CAS  Google Scholar 

Comments (0)

No login
gif