Wright A, Rukin N, Smith D et al (2016) Mini, ultra, micro’Mi - nomenclature and cost of these new minimally invasive percutaneous nephrolithotomy (PCNL) techniques. Ther Adv Urol 8(2):142–146. https://doi.org/10.1177/1756287215617674
Wei K, Le E, Bin JP et al (2001) Quantification of renal blood flow with contrast-enhanced ultrasound. J Am Coll Cardiol 37(4):1135–1140. https://doi.org/10.1016/s0735-1097(00)01210-9
Article CAS PubMed Google Scholar
Lildal SK, Hansen ESS, Laustsen C et al (2023) Gadolinium-enhanced MRI visualizing backflow at increasing intra-renal pressure in a porcine model. PLoS ONE 18(2):e0281676. https://doi.org/10.1371/journal.pone.0281676
Article CAS PubMed PubMed Central Google Scholar
Loftus C, Byrne M, Monga M (2021) High pressure endoscopic irrigation: impact on renal histology. Int Braz J Urol 47(2):350–356. https://doi.org/10.1590/S1677-5538
Article PubMed PubMed Central Google Scholar
Türk C, Petřík A, Sarica K et al (2016) EAU guidelines on Interventional Treatment for Urolithiasis. Eur Urol 69(3):475–482. https://doi.org/10.1016/j.eururo.2015.07.041
Wishahi M, El Feel A, Elkhouly A et al (2023) Concerns about stone free rate and procedure events of percutaneous nephrolithotripsy (PCNL) for 2–4 cm kidney stones by standard-PCNL vs mini-PCNL- comparative randomised study. BMC Urol 23(1):96. https://doi.org/10.1186/s12894-023-01270-1
Article PubMed PubMed Central Google Scholar
Akbulut F, Ucpinar B, Savun M 1 (2015) A major complication in micropercutaneous nephmlithotomy: Upper calyceal perforation with extrarenal migration of stone fragments due to increased intrarenal pelvic pressure. Case Rep Urol 2015:792780. https://doi.org/10.1155/2015/792780
Kukreja RA, Desai MR, Sabnis RB et al (2002) Fluid absorption during percutaneous nephrolithotomy: does it matter? J Endourol 16(4):221–224. https://doi.org/10.1089/089277902753752160
Article CAS PubMed Google Scholar
Tokas T, Herrmann TRW, Skolarikos A et al (2019) Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World J Urol 37(1):125–131. https://doi.org/10.1007/s00345-018-2378-4
Lee MS, Connors BA, Agarwal DK et al (2022) Determining the threshold of acute renal parenchymal damage for intrarenal pressure during flexible ureteroscopy using an in vivo pig model. World J Urol 40(11):2675–2681. https://doi.org/10.1007/s00345-022-04154-5
Rezakahn Khajeh N, Hall TL, Ghani KR et al (2022) Determination of Irrigation Flowrate during Flexible Ureteroscopy: methods for calculation using renal pelvis pressure. J Endourol 36(11):1405–1410. https://doi.org/10.1089/end.2022.0039
Hoeffel C, Mulé S, Huwart L et al (2010) Renal blood flow quantification in pigs using contrast-enhanced ultrasound: an ex vivo study. Ultraschall Med 31(4):363–369. https://doi.org/10.1055/s-0029-1245238
Article CAS PubMed Google Scholar
Liu ZQ, Xie J, Zhao CB et al (2022) Feasibility of contrast-enhanced ultrasound and flank position during percutaneous nephrolithotomy in patients with no apparent hydronephrosis: a randomized controlled trial. World J Urol 40(4):1043–1048. https://doi.org/10.1007/s00345-022-03933-4
Article CAS PubMed PubMed Central Google Scholar
Xia D, Peng E, Yu Y et al (2021) Comparison of contrast-enhanced ultrasound versus conventional ultrasound-guided percutaneous nephrolithotomy in patients with nondilated collecting system: a randomized controlled trial. Eur Radiol 31(9):6736–6746. https://doi.org/10.1007/s00330-021-07804-1
Jiao B, Luo Z, Huang T et al (2021) A systematic review and meta-analysis of minimally invasive vs. standard percutaneous nephrolithotomy in the surgical management of renal stones. Exp Ther Med 21(3):213. https://doi.org/10.3892/etm.2021.9645
Article PubMed PubMed Central Google Scholar
Zhong W, Zeng G, Wu K et al (2008) Does a smaller tract in percutaneous nephrolithotomy contribute to high renal pelvic pressure and postoperative fever? J Endourol 22(9):2147–2151. https://doi.org/10.1089/end.2008.0001
Schwalb DM, Eshghi M, Davidian M et al (1993) Morphological and physiological changes in the urinary tract associated with ureteral dilation and ureteropyeloscopy: an experimental study. J Urol 149(6):1576–1585. https://doi.org/10.1016/s0022-5347(17)36456-x
Article CAS PubMed Google Scholar
Li YS, Yu ZX, Han XW et al (2019) Effect of increased renal pelvis pressure on the kidney of young pigs. Chin J Exp Surg 36(1):103–106. https://doi.org/10.3760/cma.j.issn.1001-9030.2019.01.032[Chinese]
Holst U, Dissing T, Rawashdeh YF et al (2003) Norepinephrine inhibits the pelvic pressure increase in response to flow perfusion. J Urol 170(1):268–271. https://doi.org/10.1097/01.ju.0000069824.13258.14
Article CAS PubMed Google Scholar
Li D, Zhang R, Lan H et al (2024) A retrospective study on adverse events of intravenous administration of sulfur hexafluoride microbubbles in abdominal and superficial applications in 83,778 patients. Insights Imaging 15(1):65. https://doi.org/10.1186/s13244-024-01632-9
Article CAS PubMed PubMed Central Google Scholar
Song L, Chen Z, Liu T et al (2011) The application of a patented system to minimally invasive percutaneous nephrolithotomy. J Endourol 25(8):1281–1286. https://doi.org/10.1089/end.2011.0032
Liu N, Zhang Z, Hong Y et al (2019) Protocol for a prospective observational study on the association of variables obtained by contrast-enhanced ultrasonography and sepsis-associated acute kidney injury. BMJ Open 9(7):e023981. https://doi.org/10.1136/bmjopen-2018-023981
Comments (0)