Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, Singer DE. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370–5. https://doi.org/10.1001/jama.285.18.2370.
Article CAS PubMed Google Scholar
Friberg J, Buch P, Scharling H, Gadsbphioll N, Jensen GB. Rising rates of hospital admissions for atrial fibrillation. Epidemiology. 2003;14(6):666–72. https://doi.org/10.1097/01.ede.0000091649.26364.c0.
Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, Seward JB, Tsang TS. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980–2000, and implications on the projections for future prevalence. Circulation. 2006;114(2):119–25. https://doi.org/10.1161/CIRCULATIONAHA.105.595140. (Epub 2006 Jul 3).
Krijthe BP, Kunst A, Benjamin EJ, Lip GY, Franco OH, Hofman A, Witteman JC, Stricker BH, Heeringa J. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur Heart J. 2013;34(35):2746–51. https://doi.org/10.1093/eurheartj/eht280. (Epub 2013 Jul 30).
Article PubMed PubMed Central Google Scholar
Chiang CE, Wang KL, Lip GY. Stroke prevention in atrial fibrillation: an Asian perspective. Thromb Haemost. 2014;111(5):789–97. https://doi.org/10.1160/TH13-11-0948. (Epub 2014 Feb 6).
Article CAS PubMed Google Scholar
Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12(4):230–43. https://doi.org/10.1038/nrcardio.2015.2. (Epub 2015 Jan 27).
Article CAS PubMed Google Scholar
Boyalla V, Harling L, Snell A, Kralj-Hans I, Barradas-Pires A, Haldar S, Khan HR, Cleland JGF, Athanasiou T, Harding SE, Wong T. Biomarkers as predictors of recurrence of atrial fibrillation post ablation: an updated and expanded systematic review and meta-analysis. Clin Res Cardiol. 2022. https://doi.org/10.1007/s00392-021-01978-w. (Online ahead of print).
Article PubMed PubMed Central Google Scholar
Evans TC, Jehle D. The red blood cell distribution width. J Emerg Med. 1991;9(Suppl 1):71–4. https://doi.org/10.1016/0736-4679(91)90592-4.
Bessman JD, Gilmer PR Jr, Gardner FH. Improved classification of anemias by MCV and RDW. Am J Clin Pathol. 1983;80(3):322–6. https://doi.org/10.1093/ajcp/80.3.322.
Article CAS PubMed Google Scholar
Ford J. Red blood cell morphology. Int J Lab Hematol. 2013;35(3):351–7. https://doi.org/10.1111/ijlh.12082. (Epub 2013 Mar 9).
Article CAS PubMed Google Scholar
Yčas JW, Horrow JC, Horne BD. Persistent increase in red cell size distribution width after acute diseases: a biomarker of hypoxemia? Clin Chim Acta. 2015;448:107–17. https://doi.org/10.1016/j.cca.2015.05.021. (Epub 2015 Jun 18).
Article CAS PubMed Google Scholar
van Zeben D, Bieger R, van Wermeskerken RK, Castel A, Hermans J. Evaluation of microcytosis using serum ferritin and red blood cell distribution width. Eur J Haematol. 1990;44(2):106–9. https://doi.org/10.1111/j.1600-0609.1990.tb00359.x.
Weiss G, Ganz T, Goodnough LT. Anemia of inflammation. Blood. 2019;133(1):40–50. https://doi.org/10.1182/blood-2018-06-856500. (Epub 2018 Nov 6).
Article CAS PubMed PubMed Central Google Scholar
Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110(7):1037–44. https://doi.org/10.1172/JCI15686.
Article CAS PubMed PubMed Central Google Scholar
Armitage AE, Eddowes LA, Gileadi U, Cole S, Spottiswoode N, Selvakumar TA, Ho LP, Townsend AR, Drakesmith H. Hepcidin regulation by innate immune and infectious stimuli. Blood. 2011;118(15):4129–39. https://doi.org/10.1182/blood-2011-04-351957. (Epub 2011 Aug 26).
Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3. https://doi.org/10.1126/science.1104742. (Epub 2004 Oct 28).
Article CAS PubMed Google Scholar
Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr. 2017;8(1):126–36. https://doi.org/10.3945/an.116.013961. (Print 2017 Jan).
Article CAS PubMed PubMed Central Google Scholar
Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 1986;6(2):131–8. https://doi.org/10.1161/01.atv.6.2.131.
Article CAS PubMed Google Scholar
Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood. 2008;112(10):4292–7. https://doi.org/10.1182/blood-2008-02-139915. (Epub 2008 Aug 8).
Article CAS PubMed Google Scholar
Zaritsky J, Young B, Gales B, Wang HJ, Rastogi A, Westerman M, Nemeth E, Ganz T, Salusky IB. Reduction of serum hepcidin by hemodialysis in pediatric and adult patients. Clin J Am Soc Nephrol. 2010;5(6):1010–4. https://doi.org/10.2215/CJN.08161109. (Epub 2010 Mar 18).
Article PubMed PubMed Central Google Scholar
Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108(9):3204–9. https://doi.org/10.1182/blood-2006-06-027631. (Epub 2006 Jul 11).
Article CAS PubMed PubMed Central Google Scholar
Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW, Muckenthaler MU. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood. 2007;109(1):353–8. https://doi.org/10.1182/blood-2006-07-033969. (Epub 2006 Aug 31).
Article CAS PubMed Google Scholar
Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 2018;18(12):773–89. https://doi.org/10.1038/s41577-018-0066-7.
Article CAS PubMed Google Scholar
Bowker N, Shah RL, Sharp SJ, Luan J, Stewart ID, Wheeler E, Ferreira MAR, Baras A, Wareham NJ, Langenberg C, Lotta LA. Meta-analysis investigating the role of interleukin-6 mediated inflammation in type 2 diabetes. EBioMedicine. 2020;61: 103062. https://doi.org/10.1016/j.ebiom.2020.103062. (Epub 2020 Oct 21).
Article PubMed PubMed Central Google Scholar
Markousis-Mavrogenis G, Tromp J, Ouwerkerk W, Devalaraja M, Anker SD, Cleland JG, Dickstein K, Filippatos GS, van der Harst P, Lang CC, Metra M, Ng LL, Ponikowski P, Samani NJ, Zannad F, Zwinderman AH, Hillege HL, van Veldhuisen DJ, Kakkar R, Voors AA, van der Meer P. The clinical significance of interleukin-6 in heart failure: results from the BIOSTAT-CHF study. Eur J Heart Fail. 2019;21(8):965–73. https://doi.org/10.1002/ejhf.1482. (Epub 2019 May 14).
Article CAS PubMed Google Scholar
Rosa M, Chignon A, Li Z, Boulanger MC, Arsenault BJ, Bossé Y, Thériault S, Mathieu P. A Mendelian randomization study of IL6 signaling in cardiovascular diseases, immune-related disorders and longevity. NPJ Genom Med. 2019;4:23. https://doi.org/10.1038/s41525-019-0097-4. (eCollection 2019).
Article CAS PubMed PubMed Central Google Scholar
Peyssonnaux C, Zinkernagel AS, Datta V, Lauth X, Johnson RS, Nizet V. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood. 2006;107(9):3727–32. https://doi.org/10.1182/blood-2005-06-2259. (Epub 2006 Jan 3).
Comments (0)