Woulfe, P., O’Keeffe, S., Sullivan, F.J.: Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry. In: Optical fibers and sensors for medical diagnostics and treatment applications XVIII, vol. 10488, pp. 171–178. SPIE (2018)
Rosenblatt, E., Acuña, O., Abdel-Wahab, M.: The challenge of global radiation therapy: an IAEA perspective. Int. J. Radiat. Oncol. Biol. Phys. 91(4), 687–689 (2015)
Mayles, W.P.M.: The Glasgow incident—a physicist’s reflections. Clin. Oncol. 19(1), 4–7 (2007)
Williams, M.V.: Radiotherapy near misses, incidents and errors: Radiotherapy incident in Glasgow. Clin. Oncol. 19(1), 1–3 (2007)
Bogdanich, W.: Radiation offers new cures, and ways to do harm. N.Y. Times 23, A1 (2010)
Nutting, C., Dearnaley, D.P., Webb, S.: Intensity modulated radiation therapy: a clinical review. Br. J. Radiol. 73(869), 459–469 (2000)
Das, I.J., Ding, G.X., Ahnesjö, A.: Small fields: nonequilibrium radiation dosimetry. Med. Phys. 35(1), 206–215 (2008)
O’Keeffe, S., Zhao, W., Sun, W., et al.: An optical fibre-based sensor for real-time monitoring of clinical linear accelerator radiotherapy delivery. IEEE J. Sel. Top. Quantum Elect. 22(3), 35–42 (2015)
Alharbi, M., Nikandrovs, M., Byrne, K., et al.: Energy dependence of novel inorganic scintillation-based optical fiber sensors. In: Optical sensing and detection VI, vol. 11354, pp. 133–140. SPIE (2020)
Mijnheer, B., Beddar, S., Izewska, J., et al.: In vivo dosimetry in external beam radiotherapy. Med. Phys. 40(7), 070903 (2013)
Alharbi, M., Gillespie, S., Woulfe, P., et al.: Dosimetric characterization of an inorganic optical fiber sensor for external beam radiation therapy. IEEE Sens. J. 19(6), 2140–2147 (2018)
Qin, Z., Hu, Y., Ma, Y., et al.: Water-equivalent fiber radiation dosimeter with two scintillating materials. Biomed. Opt. Express 7(12), 4919–4927 (2016)
Archer, J., Li, E., Davis, J., et al.: High spatial resolution scintillator dosimetry of synchrotron microbeams. Sci. Rep. 9(1), 6873 (2019)
O’Keeffe, S., McCarthy, D., Woulfe, P., et al.: A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy. Br. J. Radiol. 88(1050), 20140702 (2015)
Qin, Z., Hu, Y., Yu, M., et al.: Embedded structure fiber-optic radiation dosimeter for radiotherapy applications. Opt. Expr. 24(5), 5172 (2016)
Sporea, D., Mihai, L., Tiseanu, I., et al.: Multidisciplinary evaluation of X-ray optical fiber sensors. Sens. Actuators A: Phys. 213, 79–88 (2014)
Hu, Y., Qin, Z., Ma, Y., et al.: Characterization of fiber radiation dosimeters with different embedded scintillator materials for radiotherapy applications. Sens. Actuators A: Phys. 269, 188–195 (2018)
Gonod, M., Avila, C.C., Suarez, M.A., et al.: Miniaturized scintillator dosimeter for small field radiation therapy. Phys. Med. Biol. 66(11), 115016 (2021)
Qin, Z., Xie, T., Dai, X., et al.: New model for explaining the over-response phenomenon in percentage of depth dose curve measured using inorganic scintillating materials for optical fiber radiation sensors. Opt. Expr. 27(17), 23693–23706 (2019)
Teixeira, M., Batista, D.V.S., Braz, D., et al.: Monte Carlo simulation of Novalis Classic 6 MV accelerator using phase space generation in GATE/Geant4 code. Prog. Nucl. Energ. 110, 142–147 (2019)
Choi, H.J., Park, H., Shin, W.G., et al.: Development of a Geant4-based independent patient dose validation system with an elaborate multileaf collimator simulation model. J. Appl. Clin. Med. Phys. 20(2), 94–106 (2019)
Ohira, S., Takegawa, H., Miyazaki, M., et al.: Monte Carlo modeling of the agility MLC for IMRT and VMAT calculations. In Vivo 34(5), 2371–2380 (2020)
Molazadeh, M., Robatjazi, M., Geraily, G., et al.: Three-dimensional IMRT QA of Monte Carlo and full scatter convolution algorithms based on 3D film dosimetry. Radiat. Phys. Chem. 186, 109528 (2021)
Allison, J., Amako, K., Apostolakis, J.E.A., et al.: Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006)
Agostinelli, S., Allison, J., Amako, K.A., et al.: Geant4-a simulation toolkit, nuclear instruments and methods in physics research section A: accelerators spectrometers. Detect. Assoc Equip. 506(3), 250–303 (2003)
Teymurazyan, A., Pang, G.: Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers. Med. Phys. 39(3), 1518–1529 (2012)
Kim, T.H., Schaarschmidt, T., Yang, H.J., et al.: Development of an IAEA phase-space dataset for the Leksell Gamma Knife Perfexion using multi-threaded Geant4 simulations. Physica Med. 64, 222–229 (2019)
Zhang, B., Xie, T., Qin, Z., et al.: Study on the over-response phenomenon of fiber X-ray sensors using the GEANT4 simulation. Chin. Phys. B 30(4), 048701 (2021)
Alharbi, M., Martinez, N., Foley, M.: Dosimetric performance of an inorganic optical fibre dosimeter when temporally separating Cherenkov radiation. In: Optical sensing and detection VII, vol. 12139, pp. 185–193. SPIE (2022)
Rucci, A., Carletti, C., Cravero, W.: Use of IAEA’s phase-space files for the implementation of a clinical accelerator virtual source model. Physica Med. 30(2), 242–248 (2014)
Hedin, E., Bäck, A., Swanpalmer, J.: Monte Carlo simulation of linear accelerator Varian Clinac iX. Report MFT-Radfys 1, 1 (2010)
Van Eijk, C.W.: Inorganic scintillators in medical imaging. Phys. Med. Biol. 47(8), R85 (2002)
Weber, M.J.: Inorganic scintillators: today and tomorrow. J. Lumin. 100(1–4), 35–45 (2002)
Podgorsak, E.B.: Review of radiation oncology physics: a handbook for teachers and students. Vienna, Austria: IAE Agency 19, 133 (2003)
Nakamura, T., Nakai, N., Sakase, T.: Measurement and detection of radiation, Taylor & Francis, chapter 4, 1983.
Spiga, J., Pellicioli, P., Manger, S.P.: Experimental benchmarking of Monte Carlo simulations for radiotherapy dosimetry using monochromatic X-ray beams in the presence of metal-based compounds. Physica Med. 66, 45–54 (2019)
NIST online database, https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients 2004.
Comments (0)