Detection of Schizophrenia from EEG Signals using Selected Statistical Moments of MFC Coefficients and Ensemble Learning

Agarwal, M., & Singhal, A. (2023). Fusion of pattern-based and statistical features for schizophrenia detection from eeg signals. Medical Engineering & Physics, 112, 103949.

Article  Google Scholar 

Ahmed, N., Natarajan, T., & Rao, K. R. (1974). Discrete cosine transform. IEEE Transactions on Computers, 100(1), 90–93.

Article  Google Scholar 

Ahmedt-Aristizabal, D., Fernando, T., Denman, S., Robinson, J. E., Sridharan, S., Johnston, P. J., Laurens, K. R., & Fookes, C. (2020). Identification of children at risk of schizophrenia via deep learning and eeg responses. IEEE Journal of Biomedical and Health Informatics, 25(1), 69–76.

Article  Google Scholar 

Akbari, H., Ghofrani, S., Zakalvand, P., & Sadiq, M. T. (2021). Schizophrenia recognition based on the phase space dynamic of eeg signals and graphical features. Biomedical Signal Processing and Control, 69, 102917.

Article  Google Scholar 

Aslan, Z., Akin, M. (2020). Automatic detection of schizophrenia by applying deep learning over spectrogram images of eeg signals. Traitement du Signal,37(2)

Aydemir, E., Dogan, S., Baygin, M., Ooi, C. P., Barua, P. D., Tuncer, T., & Acharya, U. R. (2022). Cgp17pat: Automated schizophrenia detection based on a cyclic group of prime order patterns using eeg signals. In Healthcare (Vol. 10, p. 643). MDPI.

Baygin, M. (2021). An accurate automated schizophrenia detection using tqwt and statistical moment based feature extraction. Biomedical Signal Processing and Control, 68, 102777.

Article  Google Scholar 

Berardi, M., Brosch, K., Pfarr, J.-K., Schneider, K., Sültmann, A., Thomas-Odenthal, F., Wroblewski, A., Usemann, P., Philipsen, A., Dannlowski, U., et al. (2023). Relative importance of speech and voice features in the classification of schizophrenia and depression. Translational Psychiatry, 13(1), 298.

Article  PubMed  PubMed Central  Google Scholar 

Berger, H. (1929). Über das elektroenkephalogramm des menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87(1), 527–570.

Article  Google Scholar 

Berger, H. (1929). Über das elektroenkephalogramm des menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87(1), 527–570.

Article  Google Scholar 

Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American Statistical Association, 39(227), 357–365.

CAS  Google Scholar 

Bhadra, S., & Kumar, C. J. (2024). Enhancing the efficacy of depression detection system using optimal feature selection from ehr. Computer Methods in Biomechanics and Biomedical Engineering, 27(2), 222–236.

Article  PubMed  Google Scholar 

Buettner, R., Beil, D., Scholtz, S., & Djemai, A. (2020) Development of a machine learning based algorithm to accurately detect schizophrenia based on one-minute eeg recordings. In Hawaii International Conference on System Sciences (p. 10). https://api.semanticscholar.org/CorpusID:210847454

Buettner, R., Hirschmiller, M., Schlosser, K., Rössle, M., Fernandes, M., & Timm, I. J. (2019). High-performance exclusion of schizophrenia using a novel machine learning method on eeg data. In 2019 IEEE International conference on E-health networking, application & services (HealthCom) (pp. 1–6). IEEE.

Collaborators, G. M. D., et al. (2022). Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. The Lancet Psychiatry, 9(2), 137–150.

Article  Google Scholar 

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.

Article  Google Scholar 

Cramer, J. (2002). The origins of logistic regression. Tinbergen Institute, Tinbergen Institute Discussion Papers.[SPACE]https://doi.org/10.2139/ssrn.360300

Article  Google Scholar 

Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357–366.

Article  Google Scholar 

de Miras, J. R., Ibáñez-Molina, A. J., Soriano, M. F., & Iglesias-Parro, S. (2023). Schizophrenia classification using machine learning on resting state eeg signal. Biomedical Signal Processing and Control, 79, 104233.

Article  Google Scholar 

Desai, K. (2023). Using electroencephalographic signal processing and machine learning binary classification to diagnose schizophrenia. Research Square. https://doi.org/10.21203/rs.3.rs-2715657/v1

Dietterich, T. G. (2000). Ensemble methods in machine learning. In International workshop on multiple classifier systems (pp. 1–15). Springer.

Diogo, V. S., Ferreira, H. A., Prata, D., & Initiative, A. D. N. (2022). Early diagnosis of alzheimer’s disease using machine learning: A multi-diagnostic, generalizable approach. Alzheimer’s Research & Therapy, 14(1), 107.

Article  Google Scholar 

Drucker, H. (1997). Improving regressors using boosting techniques. In Icml (Vol. 97, p. e115). Citeseer.

Escabí, M. A. (2005) 10 - biosignal processing. In J. D. Enderle, S. M. Blanchard, & J. D. Bronzino (Eds.), Introduction to biomedical engineering (Second edition) (2nd ed., pp. 549–625). Biomedical Engineering, Academic Press, Boston. https://doi.org/10.1016/B978-0-12-238662-6.50012-4. https://www.sciencedirect.com/science/article/pii/B9780122386626500124

Fleischmann, A., & De Leo, D. (2014). The world health organization’s report on suicide: A fundamental step in worldwide suicide prevention. The Journal of Crisis Intervention and Suicide Prevention, 35(5), 289–291.

Article  Google Scholar 

Grattan-Guinness, I. (2005). Joseph fourier, théorie analytique de la chaleur (1822). In Landmark Writings in Western Mathematics 1640-1940 (pp. 354–365). Elsevier.

Green, D. M., Swets, J. A., et al. (1966). Signal detection theory and psychophysics (Vol. 1). Wiley New York.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.

Article  Google Scholar 

Hajian-Tilaki, K. (2013). Receiver operating characteristic (roc) curve analysis for medical diagnostic test evaluation. Caspian Journal of Internal Medicine, 4(2), 627.

PubMed  PubMed Central  Google Scholar 

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18–28.

Article  Google Scholar 

Institute of health metrics and evaluation (ihme). global health data exchange (ghdx). (2019). http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/27a7644e8ad28e739382d31e77589dd7. Accessed 18 March 2024.

Jahmunah, V., Oh, S. L., Rajinikanth, V., Ciaccio, E. J., Cheong, K. H., Arunkumar, N., & Acharya, U. R. (2019). Automated detection of schizophrenia using nonlinear signal processing methods. Artificial Intelligence in Medicine, 100, 101698.

Article  PubMed  CAS  Google Scholar 

Keeley, B. (2021). The state of the world’s children 2021: On my mind–promoting, protecting and caring for children’s mental health. UNICEF.

Kim, J.-Y., Lee, H. S., & Lee, S.-H. (2020). Eeg source network for the diagnosis of schizophrenia and the identification of subtypes based on symptom severity—a machine learning approach. Journal of Clinical Medicine, 9(12), 3934.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ko, D.-W., & Yang, J.-J. (2022). Eeg-based schizophrenia diagnosis through time series image conversion and deep learning. Electronics, 11(14), 2265.

Article  Google Scholar 

Krishnapriya, B. (2024). Eeg-based identification of schizophrenia using deep learning techniques. In Computational intelligence and Network Systems: First International Conference, CINS 2023, Dubai, United Arab Emirates, October 18-20, 2023, Proceedings (p. 26). Springer Nature.

Kumar, J. S., & Bhuvaneswari, P. (2012). Analysis of electroencephalography (eeg) signals and its categorization-a study. Procedia engineering, 38, 2525–2536.

Article  Google Scholar 

Kumar, T. S., Rajesh, K. N., Maheswari, S., Kanhangad, V., & Acharya, U. R. (2023). Automated schizophrenia detection using local descriptors with eeg signals. Engineering Applications of Artificial Intelligence, 117, 105602.

Article  Google Scholar 

Kumar, T. S., Rajesh, K. N., Maheswari, S., Kanhangad, V., & Acharya, U. R. (2023). Automated schizophrenia detection using local descriptors with eeg signals. Engineering Applications of Artificial Intelligence, 117, 105602.

Article  Google Scholar 

Mental health. (2022). https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response. Accessed 18 Mar 2024.

Mikolas, P., Marxen, M., Riedel, P., Bröckel, K., Martini, J., Huth, F., Berndt, C., Vogelbacher, C., Jansen, A., Kircher, T., et al. (2024). Prediction of estimated risk for bipolar disorder using machine learning and structural mri features. Psychological Medicine, 54(2), 278–288.

Article  PubMed  Google Scholar 

Moitra, M., Santomauro, D., Degenhardt, L., Collins, P. Y., Whiteford, H., Vos, T., & Ferrari, A. (2021). Estimating the risk of suicide associated with mental disorders: A systematic review and meta-regression analysis. Journal of Psychiatric Research, 137, 242–249.

Article  PubMed  PubMed Central  Google Scholar 

Najafzadeh, H., Esmaeili, M., Farhang, S., Sarbaz, Y., & Rasta, S. H. (2021). Automatic classification of schizophrenia patients using resting-state eeg signals. Physical and Engineering Sciences in Medicine, 44(3), 855–870.

Article  PubMed  Google Scholar 

Oh, S. L., Vicnesh, J., Ciaccio, E. J., Yuvaraj, R., & Acharya, U. R. (2019). Deep convolutional neural network model for automated diagnosis of schizophrenia using eeg signals. Applied Sciences, 9(14), 2870.

Article  Google Scholar 

Olejarczyk, E., & Jernajczyk, W. (2017). EEG in schizophrenia. (2017). https://doi.org/10.18150/repod.0107441

Olejarczyk, E., & Jernajczyk, W. (2017). Graph-based analysis of brain connectivity in schizophrenia. PLoS ONE, 12(11), 1–28.

Article  Google Scholar 

Richhariya, B., Tanveer, M., Rashid, A. H., Initiative, A. D. N., et al. (2020). Diagnosis of alzheimer’s disease using universum support vector machine based recursive feature elimination (usvm-rfe). Biomedical Signal Processing and Control, 59, 101903.

Article  Google Scholar 

Schizophrenia. (2022). https://www.who.int/news-room/fact-sheets/detail/schizophrenia. Accessed 18 March 2024.

Shams, A. M., & Jabbari, S. (2024). A deep learning approach for diagnosis of schizophrenia disorder via data augmentation based on convolutional neural network and long short-term memory. Biomedical Engineering Letters, 1–13.

Sharma, A., & Verbeke, W. J. (2020). Improving diagnosis of depression with xgboost machine learning model and a large biomarkers dutch dataset (n= 11,081). Frontiers in big Data, 3, 15.

Article  PubMed  PubMed Central  Google Scholar 

Shen, M., Wen, P., Song, B., & Li, Y. (2024). 3d convolutional neural network for schizophrenia detection using as eeg-based functional brain network. Biomedical Signal Processing and Control, 89, 105815.

Article  Google Scholar 

Shoeibi, A., Ghassemi, N., Khodatars, M., Moridian, P., Khosravi, A., Zare, A., Gorriz, J. M., Chale-Chale, A. H., Khadem, A., & Rajendra Acharya, U. (2023). Automatic diagnosis of schizophrenia and attention deficit hyperactivity disorder in rs-fmri modality using convolutional autoencoder model and interval type-2 fuzzy regression. Cognitive Neurodynamics, 17(6), 1501–1523.

Article 

Comments (0)

No login
gif