Enhancing treatment precision through radiobiological modeling for evaluating complex VMAT plans in prostate and head-and-neck cancers

El Naqa I, Pater P, Seuntjens J. Monte Carlo role in radiobiological modelling of radiotherapy outcomes. Phys Med Biol. 2012;57. https://doi.org/10.1088/0031-9155/57/11/R75.

Mille MM, Jung JW, Lee C, Kuzmin GA, Lee C. Comparison of normal tissue dose calculation methods for epidemiological studies of radiotherapy patients.J. Radiol. Prot. 2018;38:775–92. https://doi.org/10.1088/1361-6498/aabd4f.

Article  Google Scholar 

Smilowitz JB, Das IJ, Feygelman V, Fraass BA, Kry SF, Marshall IR, Mihailidis DN, Ouhib Z, Ritter T, Snyder MG, Fairobent L. AAPM Medical Physics Practice Guideline 5.a. commissioning and QA of Treatment Planning Dose calculations - Megavoltage Photon and Electron beams. J Appl Clin Med Phys. 2015;16:14–34. https://doi.org/10.1120/jacmp.v16i5.5768.

Article  Google Scholar 

Zarepisheh M, Uribe-Sanchez AF, Li N, Jia X, Jiang SB. A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimization. Med Phys. 2014;41. https://doi.org/10.1118/1.4866886.

Hernandez V, Hansen CR, Widesott L, Bäck A, Canters R, Fusella M, Götstedt J, Jurado-Bruggeman D, Mukumoto N, Kaplan LP, Koniarová I, Piotrowski T, Placidi L, Vaniqui A, Jornet N. What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans. Radiother Oncol. 2020;153:26–33. https://doi.org/10.1016/j.radonc.2020.09.038.

Article  Google Scholar 

Elith CA, Dempsey SE, Cao F, Farshadi A. Warren-Forward.The quality assurance of volumetric modulated arc therapy (VMAT) plans for early stage prostate cancer: a technical note. J Med Radiat Sci. 2014;61:261–6. https://doi.org/10.1002/jmrs.78.

Article  Google Scholar 

Fuangrod T, Greer PB, Simpson J, Zwan BJ. Middleton.A method for evaluating treatment quality using in vivo EPID dosimetry and statistical process control in radiation therapy. Int J Health Care Qual Assur. 2017;30:90–102. https://doi.org/10.1108/IJHCQA-03-2016-0028.

Article  Google Scholar 

Allen Li X, Alber M, Deasy JO, Jackson A, Ken Jee KW, Marks LB, Martel MK, Mayo C, Moiseenko V, Nahum AE, Niemierko A, Semenenko VA. E.D. Yorke.The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM.Med Phys 39 (2012) 1386–409. https://doi.org/10.1118/1.3685447

Nuraini R. Widita.Tumor Control Probability (TCP) and normal tissue complication probability (NTCP) with consideration of Cell Biological Effect. J Phys Conf Ser. 2019;1245. https://doi.org/10.1088/1742-6596/1245/1/012092.

Astudillo-Velázquez A, Paredes-Gutiérrez L, Reséndiz-González G, Mitsoura E, Rodríguez-Laguna A, Manuel Flores-Castro J. A. Posadas-Vázquez. TCP and NTCP Radiobiological models: conventional and hypofractionated treatments in Radiotherapy. (2015) 176–88. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/47/020/47020851.pdf

Tommasino F, Nahum A, Cella L. Increasing the power of tumour control and normal tissue complication probability modelling in radiotherapy: recent trends and current issues. Transl Cancer Res. 2017;6:S807–21. https://doi.org/10.21037/tcr.2017.06.03.

Article  Google Scholar 

Liang X, Penagaricano J, Zheng D, Morrill S, Zhang X, Corry P, Griffin RJ, Han EY, Hardee M, Ratanatharathom V. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans. Radiother Oncol. 2016;11. https://doi.org/10.1186/s13014-015-0578-2.

Jakobi A, Stützer K, Bandurska-Luque A, Löck S, Haase R, Wack LJ, Mönnich D, Thorwarth D, Perez D, Lühr A, Zips D, Krause M, Baumann M, Perrin R. Richter.NTCP reduction for advanced head and neck cancer patients using proton therapy for complete or sequential boost treatment versus photon therapy. Acta Oncol (Madr). 2015;54:1658–64. https://doi.org/10.3109/0284186X.2015.1071920.

Article  Google Scholar 

Murray LJ, Lilley J, Thompson CM, Cosgrove V, Mason J, Sykes J, Franks K, Sebag-Montefiore D, Henry AM. Prostate stereotactic ablative radiation therapy using volumetric modulated arc therapy to dominant intraprostatic lesions. Int J Radiat Oncol Biol Phys. 2014;89:406–15. https://doi.org/10.1016/j.ijrobp.2014.01.042.

Article  Google Scholar 

Mesbahi A, Rasouli N, Mohammadzadeh M, Nasiri MB, Ozan TH. Comparison of radiobiological models for radiation therapy plans of prostate cancer: three-dimensional conformal versus intensity modulated radiation therapy. J Biomed Phys Eng. 2019;9:267–78. https://doi.org/10.31661/jbpe.v9i3jun.655.

Article  Google Scholar 

Chaikh A. Balosso.The use of TCP based EUD to rank and compare lung radiotherapy plans: In-silico study to evaluate the correlation between TCP with physical quality indices.Transl. Lung Cancer Res. 2017;6:366–72. https://doi.org/10.21037/tlcr.2017.04.07.

Article  Google Scholar 

Voyant C, Julian D, Roustit R, Biffi K. Lantieri.Biological effects and equivalent doses in radiotherapy: a software solution. Rep Pract Oncol Radiothe. 2014;19:47–55. https://doi.org/10.1016/j.rpor.2013.08.004.

Article  Google Scholar 

Dinapoli N, Alitto A.R., Vallati M., Autorino R., Gatta R., Boldrini L., Damiani A., Mantini G., Valentini V. RadioBio data: a moddicom module to predict tumor control probability and normal tissue complication probability in radiotherapy. HEALTHINF 2016–9th Int Conf Health Inf Proceedings; Part 9th Int Joint Conf Biomedical Eng Syst Technol BIOSTEC 2016. 2016;5:277–81. https://doi.org/10.5220/0005693502770281.

Uzan J. Nahum.Radiobiologically guided optimisation of the prescription dose and fractionation scheme in radiotherapy using BioSuite. Br J Radiol. 2012;85:1279–86. https://doi.org/10.1259/bjr/20476567.

Article  Google Scholar 

Sanchez-Nieto B. Nahum.Bioplan: Software for the biological evaluation of radiotherapy treatment plans. Med Dosim. 2000;25:71–6. https://doi.org/10.1016/S0958-3947(00)00031-5.

Article  Google Scholar 

Chang JH, Gehrke C, Prabhakar R, Gill S, Wada M, Lim Joon D. Khoo.RADBIOMOD: a simple program for utilising biological modelling in radiotherapy plan evaluation. Phys Med. 2016;32:248–54. https://doi.org/10.1016/j.ejmp.2015.10.091.

Article  Google Scholar 

Warkentin B, Stavrev P, Stavreva N, Field C, Fallone BG. A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets. J Appl Clin Med Phys. 2004;5:50–63. https://doi.org/10.1120/jacmp.v5i1.1970.

Article  Google Scholar 

Singh G, Oinam A, Kamal R, Handa B, Kumar V. Rai.Voxel based BED and EQD2Evaluation of the radiotherapy treatment plan. J Med Phys. 2018;43:155–61. https://doi.org/10.4103/jmp.JMP_29_18.

Article  Google Scholar 

Tsougos I, Grout I, Theodorou K. Kappas.A free software for the evaluation and comparison of dose response models in clinical radiotherapy (DORES). Int J Radiat Biol. 2009;85:227–37. https://doi.org/10.1080/09553000902748567.

Article  Google Scholar 

Lee TK, Rosen II. Development of generalized time-dependent TCP model and the investigation of the effect of repopulation and weekend breaks in fractionated external beam therapy. J Theor Biol. 2021;512. https://doi.org/10.1016/j.jtbi.2020.110565.

Lee S, Cao YJ, Kim CY. Physical and Radiobiological Evaluation of Radiotherapy Treatment Plan, in: evolution of Ionizing Radiation Research. InTech; 2015. https://doi.org/10.5772/60846.

Vens C, van Luijk P, Vogelius RI, El Naqa I, Humbert-Vidan L, von Neubeck C, Gomez-Roman N, Bahn E, Brualla L, Böhlen TT, Ecker S, Koch R, Handeland A, Pereira S, Possenti L, Rancati T, Todor D, Vanderstraeten B, Van Heerden M, Ullrich W, Jackson M, Alber M. Marignol. A joint physics and radiobiology DREAM team vision – towards better response prediction models to advance radiotherapy. Radiother Oncol. 2024;196. https://doi.org/10.1016/j.radonc.2024.110277.

Mesbahi A, Oladghaffari M. An overview on the clinical application of Radiobiological Modeling in Radiation Therapy of Cancer. Int J Radiol Radiat Ther. 2017;2. https://doi.org/10.15406/ijrrt.2017.02.00013.

Barry MA, Hussein M, Schettino G. Evaluating the propagation of uncertainties in biologically based Treatment Planning parameters. Front Oncol. 2020;10. https://doi.org/10.3389/fonc.2020.01058.

Coates JTT, Pirovano G. El Naqa.Radiomic and radiogenomic modeling for radiotherapy: strategies, pitfalls, and challenges. J Med Imaging. 2021;8. https://doi.org/10.1117/1.jmi.8.3.031902.

Niraula D, Cui S, Pakela J, Wei L, Luo Y, Haken RKT. El Naqa.Current status and future developments in predicting outcomes in radiation oncology. Br J. 2022. https://doi.org/10.1259/bjr.20220239. Radiol95.

Article  Google Scholar 

Chaikh A, Ojala J, Khamphan C, Garcia R, Giraud JY, Thariat J. J. Balosso.Dosimetrical and radiobiological approach to manage the dosimetric shift in the transition of dose calculation algorithm in radiation oncology: how to improve high quality treatment and avoid unexpected outcomes? Radiat.Oncol13 (2018). https://doi.org/10.1186/s13014-018-1005-2

Wang H, Cooper BT, Schiff P, Sanfilippo NJ, Peter Wu S, Hu KS, Indra J. Das, and Jinyu Xue.Dosimetric assessment of tumor control probability in intensity and volumetric modulated radiotherapy plans. Br. J Radiol. 2019;92(1094):20180471.

Article  Google Scholar 

Rana S. Cheng.Radiobiological impact of planning techniques for prostate cancer in terms of tumor control probability and normal tissue complication probability. Ann Med Health Sci Res. 2014;4:167. https://doi.org/10.4103/2141-9248.129023.

Article  Google Scholar 

Takam R, Bezak E, Yeoh EE. Marcu.Assessment of normal tissue complications following prostate cancer irradiation: comparison of radiation treatment modalities using NTCP models. Med Phys. 2010;37:5126–37. https://doi.org/10.1118/1.3481514.

Article  Google Scholar 

Bell K, Heitfeld M, Licht N, Rübe C, Dzierma Y. Influence of daily imaging on plan quality and normal tissue toxicity for prostate cancer radiotherapy. Radiat Oncol12. 2017. https://doi.org/10.1186/s13014-016-0757-9.

Article  Google Scholar 

Catton CN, Lukka H, Gu C-S, Martin JM, Supiot S, Chung PW, Bauman GS, Bahary J-P, Ahmed S, Cheung P, Hun Tai K, Wu JS, Parliament MB, Tsakiridis T, Corbett TB, Tang C, Dayes IS, Warde P, Craig TK, Julian JA, Levine MN. Randomized Trial of a Hypofractionated Radiation Regimen for the treatment of localized prostate Cancer. J Clin Oncol. 2017;35:1884–90. https://doi.org/10.1200/JCO.

Article  Google Scholar 

Patterson H, Beatson F, Dearnaley D, Syndikus I, Sumo G, Bidmead M, Bloomfi D, Clark C, Gao A, Hassan S, Horwich A, Huddart R, Khoo V, Kirkbride P, Mayles H, Mayles P, Naismith O, Parker C, Patterson H, Russell M, Scrase C, South C, Staff J. Hall. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial. Articles Lancet Oncol. 2012;13:43–54. https://doi.org/10.1016/S1470.

Article  Google Scholar 

Jang H, Park J, Artz M, Zhang Y, Ricci JC, Huh S, Johnson PB, Kim MH, Chun M, Oh YT, Noh OK. Park. Effective organs-at-risk dose sparing in Volumetric Modulated Arc Therapy using a Half-Beam technique in whole pelvic irradiation. Front Oncol. 2021;11. https://doi.org/10.3389/fonc.2021.611469.

Kan MWK, Leung LHT, Yu PKN. The use of biologically related model (eclipse) for the intensity-modulated radiation therapy planning of nasopharyngeal carcinomas. PLoS ONE. 2014;9. https://doi.org/10.1371/journal.pone.0112229.

El-Mesidy S, El-Kashif A, El-Sherbini N, Thabet K, Hammam W, Abdelrahman M, Alshereef W. Uncomplicated Tumour Control Probability (UTCP) in post-operative radiotherapy of left breast cancer-three dimensional conformal versus intensity modulated Radiation Therapy (IMRT). Res Oncol. 2012;8(1–2):41–9.

Article  Google Scholar 

Sukhikh ES, Sukhikh LG, Taletsky AV, Vertinsky AV, Izhevsky PV, Sheino IN. Influence of SBRT fractionation on TCP and NTCP estimations for prostate cancer. Phys Med. 2019;62:41–6. https://doi.org/10.1016/j.ejmp.2019.04.017.

Article  Google Scholar 

Pilśniak A, Szlauer-Stefańska A, Tukiendorf A, Rutkowski T, Składowski K. Kamińska-Winciorek. Dermoscopy of Chronic Radiation-Induced Dermatitis in patients with Head and Neck cancers treated with Radiotherapy. Life. 2024;14:399. https://doi.org/10.3390/life14030399.

Article  Google Scholar 

Narayanasamy G, Pyakuryal AP, Pandit S, Vincent J, Lee C, Mavroidis P, Papanikolaou N, Kudrimoti M. Sio.Radiobiological evaluation of intensity modulated radiation therapy treatments of patients with head and neck cancer: a dual-institutional study. J Med Phys. 2015;40:165–9. https://doi.org/10.4103/0971-6203.165075.

Article  Google Scholar 

Mosleh-Shirazi MA, Sheikholeslami A, Fathipour E, Mohammadianpanah M, Ansari M, Karbasi S, Hamedi SH, Khanjani N, Sasani MR, Jafari P. Fardid.Equivalent uniform dose and normal tissue complication probability of acute esophagitis in head-and-neck radiotherapy: sensitivity to dose calculation accuracy. Int J Radiat Res. 2022;20:447–57. https://doi.org/10.52547/ijrr.20.2.28.

Article  Google Scholar 

Gregoire V, MacKie TR. Dose prescription.reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU report 83. Imaging Med. 2011;3:367–73. https://doi.org/10.2217/iim.11.22.

Comments (0)

No login
gif