Nanotechnology based materials and inventions to fight against COVID-19: recent progress in the development of robust diagnostics, surveillance tools, therapeutics and vaccines

Baloch S, Baloch MA, Zheng T, Pei X. The coronavirus disease 2019 (COVID-19) pandemic. Tohoku J Exp Med. 2020;250(4):271–8. https://doi.org/10.1620/tjem.250.271.

Article  Google Scholar 

Mahalmani VM, Mahendru D, Semwal A, et al. COVID-19 pandemic: a review based on current evidence. Indian J Pharmacol. 2020;52(2):117–29. https://doi.org/10.4103/ijp.IJP_310_20.

Article  Google Scholar 

Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020;91(1):157–60. https://doi.org/10.23750/abm.v91i1.9397.

Article  Google Scholar 

Muralidar S, Ambi SV, Sekaran S, Krishnan UM. The emergence of COVID-19 as a global pandemic: understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie. 2020;179:85–100. https://doi.org/10.1016/j.biochi.2020.09.018.

Article  Google Scholar 

Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health. 2020;25(3):278–80. https://doi.org/10.1111/tmi.13383.

Article  Google Scholar 

Rauf A, Abu-Izneid T, Olatunde A, et al. COVID-19 pandemic: epidemiology, etiology, conventional and non-conventional therapies. Int J Environ Res Public Health. 2020;17(21):8155. https://doi.org/10.3390/ijerph17218155.

Article  Google Scholar 

Lotfi M, Hamblin MR, Rezaei N. COVID-19: transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta. 2020;508:254–66. https://doi.org/10.1016/j.cca.2020.05.044.

Article  Google Scholar 

Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J Clin Med. 2020;9(4):1225. https://doi.org/10.3390/jcm9041225.

Article  Google Scholar 

Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020;55(5):105951. https://doi.org/10.1016/j.ijantimicag.2020.105951.

Article  Google Scholar 

Dhama K, Khan S, Tiwari R, et al. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev. 2020;33(4):e00028-20. https://doi.org/10.1128/CMR.00028-20.

Article  Google Scholar 

Liu YC, Kuo RL, Shih SR. COVID-19: The first documented coronavirus pandemic in history. Biomed J. 2020;43(4):328–33. https://doi.org/10.1016/j.bj.2020.04.007.

Article  Google Scholar 

Xiang J, Yan M, Li H, Liu T, Lin C, Huang S, Shen C. Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19). MedRxiv. 2020. https://doi.org/10.1101/2020.02.27.20028787.

Article  Google Scholar 

Tavakol S, Zahmatkeshan M, Mohammadinejad R, et al. The role of nanotechnology in current COVID-19 outbreak. Heliyon. 2021;7(4):e06841. https://doi.org/10.1016/j.heliyon.2021.e06841.

Article  Google Scholar 

Gutiérrez Rodelo C, et al. Zinc associated nanomaterials and their intervention in emerging respiratory viruses: journey to the field of biomedicine and biomaterials. Coord Chem Rev. 2022;457:214402. https://doi.org/10.1016/j.ccr.2021.214402.

Article  Google Scholar 

Jacofsky D, Jacofsky EM, Jacofsky M. Understanding antibody testing for COVID-19. J Arthroplasty. 2020;35(7S):S74–81. https://doi.org/10.1016/j.arth.2020.04.055.

Article  Google Scholar 

Cano-Vicent A, Tuñón-Molina A, Martí M, et al. Antiviral face mask functionalized with solidified hand soap: low-cost infection prevention clothing against enveloped viruses such as SARS-CoV-2. ACS Omega. 2021;6(36):23495–503. https://doi.org/10.1021/acsomega.1c03511.

Article  Google Scholar 

Larsen GS, et al. Polymer, additives, and processing effects on N95 filter performance. ACS Appl Polym Mater. 2021;3:1022–31.

Article  Google Scholar 

Zhou J, Hu Z, Zabihi F, Chen Z, Zhu M. Progress and perspective of antiviral protective material. Adv Fiber Mater. 2020;2:123–39.

Article  Google Scholar 

Muthiah G, Sarkar A, Roy S, et al. Nanotechnology toolkit for combating COVID-19 and beyond. Chem Nano Mat. 2022;8(4):e202100505. https://doi.org/10.1002/cnma.202100505.

Article  Google Scholar 

Foffa I, Losi P, Quaranta P, Cara A, Al Kayal T, D’Acunto M, Presciuttini G, Pistello M, Soldani G. A copper nanoparticles-based polymeric spray coating: nanoshield against Sars-Cov-2. J Appl Biomater Funct Mater. 2022;20:22808000221076326. https://doi.org/10.1177/22808000221076326.

Article  Google Scholar 

Pemmada R, Zhu X, Dash M, Zhou Y, Ramakrishna S, Peng X, Thomas V, Jain S, Nanda HS. Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics. Mater (Basel). 2020;13(18):4041. https://doi.org/10.3390/ma13184041.

Article  Google Scholar 

Imani SM, Ladouceur L, Marshall T, Maclachlan R, Soleymani L, Didar TF. Antimicrobial nanomaterials and coatings: current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano. 2020;14(10):12341–69. https://doi.org/10.1021/acsnano.0c05937.

Article  Google Scholar 

Tseng CC, Pan ZM, Chang CH. Application of a quaternary ammonium agent on surgical face masks before use for pre-decontamination of nosocomial infection-related bioaerosols. Aerosol Sci Technol. 2016;50:199–210.

Article  Google Scholar 

Liebeskind LS, Allred GD, U.S. Patent and Trade Office. Methods for using water-stabalized organosilanes. 2003. (U.S. Patent No. 6,632,805).

Google Scholar 

Liebeskind LS, Allred GD, U.S. Patent and Trademark Office. Water-stabilized organosilane compounds and methods for using the same. 2001. (U.S. Patent No. 6,221,944).

Google Scholar 

Liebeskind LS, Allred GD, U.S. Patent and Trademark Office. Water-stabilized organosilane compounds and methods for using the same. 1999. (U.S. Patent No. 5,959,014).

Google Scholar 

Paranthaman MP, Peroutka-Bigus N, Larsen KR, et al. Effective antiviral coatings for deactivating SARS-CoV-2 virus on N95 respirator masks or filters. Mater Today Adv. 2022;14:100228. https://doi.org/10.1016/j.mtadv.2022.100228.

Article  Google Scholar 

Balagna C, Perero S, Percivalle E, Nepita EV, Ferraris M. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics. 2020;1.

Damokhi A, Yousefinejad S, Fakherpour A, Jahangiri M. Improvement of performance and function in respiratory protection equipment using nanomaterials. J Nanopart Res. 2022;24(4):76. https://doi.org/10.1007/s11051-022-05460-0.

Article  Google Scholar 

Deng W, Sun Y, Yao X, et al. Masks for COVID-19. Adv Sci (Weinh). 2022;9(3):e2102189. https://doi.org/10.1002/advs.202102189.

Article  Google Scholar 

Jung S-Y, Kang KW, Lee E-Y, Seo D-W, Kim H-L, Kim H, Kwon T, Park H-L, Kim H, Lee S-M. Heterologous prime–boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus. Vaccine. 2018;36(24):3468–76.

Article  Google Scholar 

He L, Tai W, Li J, Chen Y, Gao Y, Li J, Sun S, Zhou Y, Du L, Zhao G. Enhanced ability of oligomeric nanobodies targeting MERS coronavirus receptor-binding domain. Viruses. 2019;11(2):166.

Article  Google Scholar 

Sousa BC, Massar CJ, Gleason MA, et al. On the emergence of antibacterial and antiviral copper cold spray coatings. J Biol Eng. 2021;15:8. https://doi.org/10.1186/s13036-021-00256-7.

Article  Google Scholar 

Takeda Y, Jamsransuren D, Nagao T, Fukui Y, Matsuda S, Ogawa H. Application of copper iodide nanoparticle-doped film and fabric to inactivate SARS-CoV-2 via the virucidal activity of cuprous ions (Cu+). Appl Environ Microbiol. 2021;87(24):e0182421. https://doi.org/10.1128/AEM.01824-21.

Article  Google Scholar 

Meister TL, Fortmann J, Breisch M, Sengstock C, Steinmann E, Köller M, Pfaender S, Ludwig A. Nanoscale copper and silver thin film systems display differences in antiviral and antibacterial properties. Sci Rep. 2022;12(1):7193. https://doi.org/10.1038/s41598-022-11212-w.

Article  Google Scholar 

Souri M, Chiani M, Farhangi A, et al. Anti-COVID-19 Nanomaterials: directions to improve prevention, diagnosis, and treatment. Nanomaterials (Basel). 2022;12(5):783. https://doi.org/10.3390/nano12050783. Published 2022 Feb 25.

Article  Google Scholar 

Ha T, Pham TTM, Kim M, Kim YH, Park JH, Seo JH, Kim KM, Ha E. Antiviral activities of high energy e-beam induced copper nanoparticles against H1N1 influenza virus. Nanomaterials (Basel). 2022;12(2):268. https://doi.org/10.3390/nano12020268.

Article  Google Scholar 

Gupta V, Mohapatra S, Mishra H, et al. Nanotechnology in cosmetics and cosmeceuticals-a review of latest advancements. Gels. 2022;8(3):173. https://doi.org/10.3390/gels8030173.

Article  Google Scholar 

Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Aldhaher A, Ramakrishna S, Tahriri M, Tayebi L, Webster TJ. Green synthesis of ZnO NPs via Salvia hispanica: evaluation of potential antioxidant, antibacterial, mammalian cell viability, H1N1 influenza virus inhibition and photocatalytic activities. J Biomed Nanotechnol. 2020;16(4):456–66. https://doi.org/10.1166/jbn.2020.2916.

Article  Google Scholar 

Yüce M, Filiztekin E, Özkaya KG. COVID-19 diagnosis-a review of current methods. Biosens Bioelectron. 2021;172:112752. https://doi.org/10.1016/j.bios.2020.112752.

Article  Google Scholar 

Sarkar J, Das S, Aich S, Bhattacharyya P, Acharya K. Antiviral potential of nanoparticles for the treatment of Coronavirus infections. J Trace Elem Med Biol. 2022;72:126977. https://doi.org/10.1016/j.jtemb.2022.126977.

Article  Google Scholar 

Comments (0)

No login
gif