M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, Bandgap engineering by tuning particle size and crystallinity of nanocrystalline composite thin films, Applied Physics Letters, 93(23), 231909 (2008); https://doi.org/10.1063/1.3042163.
M. Batzill, U. Diebold. The surface and materials science of Tin dioxide, Progress in Surface Science, 79(2-4),47-154(2005); https://doi.org/10.1016/j.progsurf.2005.09.002.
B. Liu, C. W. Cheng, R. Chen, Z. X. Shen, H. J. Fan, H. D. Sun, J. Fine structure of ultraviolet photoluminescence of tin oxide nanowires, The Journal of Physical Chemistry C, 114 (8), 3407-3410 (2010); https://doi.org/10.1021/jp9104294.
A. Sharma, M. Varshney, S. Kumar, K. D. Verma, R. Kumar, Magnetic Properties of Fe and Ni Doped SnO2 Nanoparticles, Sage Journals; 1(1), 24-28, (2011); https://doi.org/10.5772/50948.
B. Liu, C. W. Cheng, R. Chen, Z. X. Shen, H. J. Fan, H. D. Sun, J. Fine structure of ultraviolet photoluminescence of tin oxide nanowires, The Journal of Physical Chemistry C,114 (8), 3407-3410 (2010); https://doi.org/10.1021/jp9104294.
S. Gurakar, T. Serin, N. Serin, Electrical And Microstructural Properties Of (Cu, Al, In)-doped SnO2 Films Deposited By Spray Pyrolysis, Advanced Materials Letters, 5(6), 309-314 (2014) ; https://doi.org/10.5185/amlett.2014.amwc.1016.
C. Korber, P. Agoston, A. Klein, Sens, Surface and bulk properties of sputter deposited undoped and Sb-doped SnO2 thin films, Sensors and Actuators B: Chemical, B 139(2), 665-672 (2009); https://doi.org/10.1016/j.snb.2009.03.067.
F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu, D. R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol-gel method, Journal of Physical Chemistry B, 108 (24), 8119-8123 (2004); https://doi.org/10.1021/jp036741e.
H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-Type Electrical Conduction in Transparent Thin Films of CuAlO2, Nature (London) 389, 939 -942 (1997); http://dx.doi.org/10.1038/40087.
B. G. Lewis, D. C. Paine, Applications and Processing of Transparent Conducting Oxides, MRS Bulletin, 25, 22-27 (2000). http://dx.doi.org/10.1557/mrs2000.147.
S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO (2-delta), Phys Rev Lett. 91(7):077205(2003); https://doi.org/10.1103/PhysRevLett.91.077205.
C. M. Liu, L. M. Fang, X. T. Zu, W. L. Zhou, The magnetism and photoluminescence of nickel-doped SnO2 nano-powders, Physica Scripta, 80 (6), 065703 (2009); https://doi.org/10.1088/0031-8949/80/06/065703.
U. Diebold, J. Lehman, T. Mahmoud, M. Kuhn, G. Leonardelli, W. Hebenstreit, M. Schmid, P. Varga, Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study, Surface Science, 411, 137-153 (1998); https://api.semanticscholar.org/CorpusID:93289427.
G.A. Prinz, Magnetoelectronics, Science, 282(5394), 1660-1663 (1998); https://doi.org/10.1126/science.282.5394.1660.
D. D. Awschalom, J.M. Kikkawa, Electron Spin and Optical Coherence in Semiconductors, Physics Today, 52 (6), 33-38 (1999); https://doi.org/10.1063/1.882695.
W. Prellier, A. Fouchet, B. Mercey, Oxide-diluted magnetic semiconductors: A review of the experimental status, Journal of Physics: Condensed Matter 15(37):1583-1601 (2003); https://doi.org/10.1088/0953-8984/15/37/R01.
S. Picozzi, Magnetic semiconductors: Engineering ferromagnetism, Nature Materials 3(6):349-350 (2004); https://doi.org/10.1038/nmat1137.
S. Bhuvana, H. B. Ramalingam, G. Thilakavathi, K.Vadivel. Structural, optical and magnetic properties of (Ni-Mn) co-doped tin oxide nanoparticles, Materials Technology, 32(5), 305-309 (2017); https://doi.org/10.1080/10667857.2016.1215088.
C. V. Komen, A. Thurber, K. M. Reddy, J. Hays, A. Punnoose, Structure-Magnetic Property Relationship in Transition Metal (M=V, Cr, Mn, Fe, Co, Ni) Doped SnO2 Nanoparticles, Journal of Applied Physics. 103(7), 07D141-1 - 07D141-3 (2008). http://dx.doi.org/10.1063/1.2836797.
N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, and F. Gervais, Ferromagnetism in transition-metal-doped TiO2 thin films, Physical Review B, 70(19), 195204 (2004); https://doi.org/10.1103/PhysRevB.70.195204.
N.H. Hong, J Sakai, NT Huong, N Poirot, A Ruyter, Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films, Physical Review B, 72(4), 045336 (2005); https://doi.org/10.1103/PhysRevB.72.045336.
D.A. Seghier, HP Gislason, On the oxygen vacancy in Co-doped ZnO thin films, Physica B Condensed Matter 404(23):4800-4802(2009); https://doi.org/10.1016/j.physb.2009.08.152.
L.S. Vlasenko, Magnetic Resonance Studies of Intrinsic Defects in ZnO: Oxygen Vacancy, Applied Magnetic Resonance, 39(1-2),103-111(2010); https://doi.org/10.1007/s00723-010-0140-1.
K Sato, H. K. Yoshida, Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors, Japanese Journal of Applied Physics, 39(6B):L555(2000); https://doi.org/10.1143/JJAP.39.L555.
H. Weng, X. Yang, J. Dong, H. Mizuseki, M. Kawasaki, Y Kawazoe, Electronic structure and optical properties of the Co-doped anatase TiO2 studied from first principles, Physical Review B, 69(12):125219 (2004); https://doi.org/10.1103/PhysRevB.69.125219.
G Rahman, V.M. García-suárez, SC Hong. Vacancy-induced magnetism in SnO2: A density functional study, Physical Review B: Condensed Matter. 78(18), 184404 (2008); https://doi.org/10.1103/PhysRevB.78.184404.
C.B. Fitzgerald, M Venkatesan, LS Dorneles, R Gunning, P Stamenov, JMD Coey. Magnetism in dilute magnetic oxide thin films based on SnO2, Physical Review B.74(11), 115307(2006); https://doi.org/10.1103/PhysRevB.74.115307.
S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene, and T. Venkatesan, High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2, Physical Review Letters.91(7), 077205 (2003); https://doi.org/10.1103/PhysRevLett.91.077205.
JMD Coey, AP Douvalis, CB Fitzgerald, M Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Applied Physics Letters;84(8),1332-1334 (2004) ; https://doi.org/10.1063/1.1650041.
A. Punnoose, J. Hays, A. Thurber, M. H. Engelhard, R. K. Kukkadapu, C. Wang, V. Shutthanandan, S. Thevuthasan, Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping, Physical Review B. 72, 054402 (2005); https://doi.org/10.1103/PhysRevB.72.054402.
K. Nomura, Magnetic Properties and Oxygen Defects of Dilute Metal Doped Tin Oxide Based Semiconductor, Croatica Chemica Acta, 88(4), 579-590(2016); https://doi.org/10.5562/cca2784.
P. Hohenherg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev, 136(3B), B864-B871(1964); https://doi.org/10.1103/PhysRev.136.B864.
J. M. Soler, E. Artacho, J. D. Gale, A. Garc´ıa, J. Junquera, P. Ordej´on and D. S´anchez-Portal, The SIESTA Method for ab Initio Order-N Materials Simulation, Journal of Physics: Condensed Matter, 14(11), 2745-2779(2002), http://dx.doi.org/10.1088/0953-8984/14/11/302.
D. S´anchez-Portal, P. Ordej´on, E. Artacho and J. M. Soler, Density-Functional Method for Very Large Systems with LCAO Basis Sets, International Journal of Quantum Chemistry, 65(5), 453-461 (1997). https://doi.org/10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V.
P. Ordej´on, Linear Scaling ab initio Calculations in Nanoscale Materials with SIESTA, Phys. Status Solidi, 217(1), 335-336 (2000); https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<335::AID-PSSB335>3.0.CO;2-Z.
X. L. Wang, Z. X. Dai and Z. Zeng, Search for ferromagnetism in SnO2 doped with transition metals (V, Mn, Fe, and Co), Journal of Physics: Condensed Matter, 20(4), 045214 (2008); https://doi.org/10.1088/0953-8984/20/04/045214.
D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett., 45(7), 566(1980); https://doi.org/10.1103/PhysRevLett.45.566.
A. F. Lamrani,M. Belaiche, A. Benyoussef, A. E. Kenz,E.H. Saidi, First-principles study of electronic structure and magnetic properties of doped SnO2 (rutile) with single and double impurities, Journal of Magnetism & Magnetic Materials, 323(23),2982-2986 (2011); https://doi.org/10.1016/j.jmmm.2011.06.021.
Y. Zhang, W. Yang, 890. Comment on “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett. 80(4), 890 (1998); https://doi.org/10.1103/PhysRevLett.80.890.
U. von Barth, L. Hedin, A local exchange-correlation potential for the spin polarized case, Journal of Physics C: Solid State Physics, 5(13),1629-1642 (1972); https://doi.org/10.1088/0022-3719/5/13/012.
E. Salmani, A. Laghrissi, R. Lamouri1, M. Rouchdi, M. Dehmani, H. Ez-Zahraouy, N. Hassanain, A. Mzerd, A. Benyoussef, Theoretical study of electronic, magnetic and optical properties of TM (V, Cr, Mn and Fe) doped SnO2 ab-initio and Monte Carlo simulation, Optical Quantum Electronics, 50(85), (2018); https://doi.org/10.1007/s11082-018-1355-x.
M. Toyoda, H. Akai, K. Sato, Y. H. Katayama, Electronic structures of (Zn, TM)O (TM: V, Cr, Mn, Fe, Co, and Ni) in the self-interaction-corrected calculations, Physica B: Condensed Matter, 376–377, 647-650(2006), https://doi.org/10.1016/j.physb.2005.12.163.
S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, 58(8), 1200–1211 (1980); https://doi.org/10.1139/p80-159.
S. Roy, H. Luitel, D. Sanyal, Magnetic properties of transition metal doped SnO2: A detailed theoretical study, Computational Condensed Matter 21, e00393 ( 2019); https://doi.org/10.1016/j.cocom.2019.e00393.
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558-561(1993); https://doi.org/10.1103/PhysRevB.47.558.
G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium, Phys. Rev. B 49(20), 14251 – 14271 (1994); https://doi.org/10.1103/PhysRevB.49.14251.
G.Kresse, J.Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6(1), 15-50 (1996), https://doi.org/10.1016/0927-0256(96)00008-0.
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(6), 11169 -11186 (1996), https://doi.org/10.1103/PhysRevB.54.11169.
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (18), 3865-3868 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12), 5188-5192 (1976); https://doi.org/10.1103/PhysRevB.13.5188.
P.M. Lee, Y.S. Liu, L. Villamagua, A. Stashans, M. Carini, C.Y. Liu, Experimental Observation and Computer Simulation of Al/Sn Substitution in p-Type Aluminum Nitride-Doped Tin Oxide Thin Film; The Journal of Physical Chemistry C 120(8), 4211-4218(2016); https://doi.org/10.1021/acs.jpcc.5b10791.
L. Lin, P. Wang, J. Huang, W. Yu, H. Tao, L. Zhu & Z. Zhang, Investigation on Electronic Structures and Magnetic Properties of (Mn, Ga) Co-doped SnO2, Journal of Superconductivity & Novel Magnetism, 32(11), 3601-3607 (2019); https://doi.org/10.1007/s10948-019-5130-4.
V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study; International Journal of Quantum Chem. 77(5), 895–910 (2015) https://doi.org/10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C.
K. C. Zhang, Y. F. Li, Y. Liu, F. Chi, Density-functional study on the ferromagnetism of Mn-doped SnO2, J. Appl. Phys. 114(13), 133707 (2013); https://doi.org/10.1063/1.4824368.
W. Akbar, I. Elahi, S. Nazir, Development of ferromagnetism and formation energetics in 3d TM-doped SnO2: GGA and GGA + U calculations, Journal of Magnetism and Magnetic Materials, 511,166948 (2020); https://doi.org/10.1016/j.jmmm.2020.166948.
P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2K, an Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties, Technical University of Vienna, Vienna, 2001.
H. Kimura, T.Fukumura, M. Kawasaki, K.Inaba,T. Hasegawa,H. Koinuma, Rutile-Type Oxide-Diluted Magnetic Semiconductor: Mn-Doped SnO2, Applied Physics Letters., 80(1), 94–96 (2002); https://doi.org/10.1063/1.1430856.
NH. Hong, N.Poirot, J.Saka,M. Sno, Ferromagnetism observed in pristine SnO2 thin films, Physical Review B, Condensed Matter, 77(3), 033205(2008), https://doi.org/10.1103/PhysRevB.77.033205.
SA.Ahmed, Room-temperature ferromagnetism in pure and Mn doped SnO2 powders, Solid State Communications, 150(43–44), 2190-2193 (2010); https://doi.org/10.1016/j.ssc.2010.08.029.
CB.Fitzgerald, M.Venkatesan,LS. Dorneles, R.Gunning,P. Stamenov, JMD Coey, Magnetism in dilute magnetic oxide thin films based on SnO2, Physical review B 74(1-10), 115307 (2006); https://api.semanticscholar.org/CorpusID:55823541.
Z.M. Tian, S.L. Yuan, J.H. He, P. Li, S.Q. Zhang, C.H. Wang, Y.Q. Wang, S.Y. Yin, L. Liu, Structure and magnetic properties in Mn doped SnO2 nanoparticles synthesized by chemical co-precipitation method, Journal of Alloys and Compounds, 466(1–2),26-30 (2008); https://doi.org/10.1016/j.jallcom.2007.11.054.
Y. Xiao, S. Ge, L. Xi, Y. Zuo, X. Zhou, B. Zhang, L. Zhang, C. Li, X. Han, Z. Wen, Room temperature ferromagnetism of Mn-doped SnO2 thin films fabricated by sol–gel method, Applied Surface Science, 254(22), 7459-7463 (2008); https://doi.org/10.1016/j.apsusc.2008.06.026.
S.B. Ogale,R.J. Choudhary,J.P. Buban,S.E. Lofland, S.R.Shinde,S.N. Kale,V.N. Kulkarni,J. Higgins, C.Lanci,J.R.Simpson,N.D. Browning,S. D. Sarma, H.D.Drew, R.L.Greene,T.Venkatesan, High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2−, Phys. Rev. Lett. 91(7), 077205( 2003); https://doi.org/10.1103/PhysRevLett.91.077205.
J.M.D. Coey, A.P.Douvails, C.B.Fitzgerald,M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett. 84(8), 1332–1334 (2004); https://doi.org/10.1063/1.1650041.
A. Punnoose, J. Hays, A.Thurber, M.H. Engelhard,R.K., Kukkadapu, C. Wang, V. Shutthanandan, S. Thevuthasan, Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping, Phys. Rev. B, 72(5), 054402(2005); https://doi.org/10.1103/PhysRevB.72.054402.
A. M. M. Navarro, C. E. R.Torres, A. F. Cabrera, M. Weissmann, K. Nomura,L. A. Errico, Ab Initio Study of the Ferromagnetic Response, Local Structure, and Hyperfine Properties of Fe-Doped SnO2, The Journal of Physical Chemistry C, 119(10), 5596−5603(2015); https://doi.org/10.1021/jp512521q.
A. Stashans, A. Chamba, A quantum-chemical approach to Ni and Fe codoping in SnO2, Journal of Theoretical and Computational Chemistry, 15(2), 1650016(2016); https://doi.org/10.1142/S0219633616500164.
P. Chetri, B.Choudhury, A.Choudhury, Room temperature ferromagnetism in SnO2 nanoparticles: an experimental and density functional study, Journal of Materials Chemistry C 2, 9294-9302 (2014); https://doi.org/10.1039/C4TC01070A.
G. Rahman, V.M.G.S.Arez,S.C. Hong, Vacancy-induced magnetism in SnO2: A density functional study, Phys. Rev. B 78(18), 184404 (2008); https://doi.org/10.1103/PhysRevB.78.184404.
J.M.D.Coey,A.P. Douvalis.,C.B. Fitzgerald,M.Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett. 84(8), 1332–1334 (2004); https://doi.org/10.1063/1.1650041.
Y.T. Fu, N. Sun, L.Feng, S.Wen,Y.K. An,J.W.Liu, Local structure and magnetic properties of Fe-doped SnO2 films, Journal of Alloys and Compounds, 698, 863-867(2017); https://doi.org/10.1016/j.jallcom.2016.12.297.
Y. Gao1, Q. Y. Hou, Q. L. Liu, Effect of Fe Doping and Point Defects (VO and VSn) on the Magnetic Properties of SnO2, Journal of Superconductivity and Novel Magnetism,32, 2877–2884(2019); https://doi.org/10.1007/s10948-019-5053-0.
J.M.D.Coey, A.P. Douvalis., C.B. Fitzgerald, M.Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett. 84(8), 1332–1334 (2004); https://doi.org/10.1063/1.1650041.
Y. Gao, Q. Hou, Q. Liu, First-principles study on the electronic structures and magneto-optical properties of Fe2+/3+ doped SnO2, Solid State Communications, 305, 113764 (2020); https://doi.org/10.1016/j.ssc.2019.113764.
N.H. Hong, J.Sakai,N.T. Huong,N. Poirot,A. Ruyter, Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films, Phys. Rev. B 72(4), 045336 (2005); https://doi.org/10.1103/PhysRevB.72.045336.
K. Nomura, C.A.Barrero, J. Sakuma, M. Takeda, Room-temperature ferromagnetism of sol-gel-synthesized powders, Phys. Rev. B 75(18), 184411(2007), https://doi.org/10.1103/PhysRevB.75.184411.
C.E. Rodrı,L. Errico,F. Golmar, A.M.M.Navarro, A.F.Cabrera, The role of the dopant in the magnetism of Fe-doped SnO2 films, Journal of Magnetism and Magnetic Materials, 316(2), 219-222(2007); https://doi.org/10.1016/j.jmmm.2007.02.094.
A. Sharma, M.Varshney, S.Kumar,K.D.Verma, R. Kumar, Magnetic Properties of Fe and Ni Doped SnO2 Nanoparticles, Nanomaterials and Nanotechnology, 1(1) (2011); https://doi.org/10.5772/50948.
K. Nomura, J. Okabayashi, K. Okamura, Y. Yamada, Magnetic properties of Fe and Co codoped SnO2 prepared by sol-gel method, Journal of Applied Physics, 110(8), 083901 (2011); https://doi.org/10.1063/1.3651468.
Y. Fu, N.Sun, L.Feng,S. Wen, Y.An,J. Liu, Local structure and magnetic properties of Fe-doped SnO2 films, Journal of Alloys and Compounds, 698, 863-867(2017); https://doi.org/10.1016/j.jallcom.2016.12.297.
J.M.D. Coey, A.P. Douvalis., C.B. Fitzgerald, M.Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett. 84(8), 1332–1334 (2004); https://doi.org/10.1063/1.1650041.
S. Sambasivam, B.Chun, J.G. Lin, Intrinsic magnetism in Fe doped SnO2 nanoparticles, Journal of Solid State Chemistry, 184(1), 199-203 (2011); https://doi.org/10.1016/j.jssc.2010.11.010.
R. Adhikari, A.K. Das, D.Karmakar, Structure and magnetism of Fe-doped SnO2 nanoparticles, Phys. Rev. B 78(2-1), 024404(2008); https://doi.org/10.1103/PhysRevB.78.024404.
A. Punnoose,J. Hays,A.Thurber,M.E.Engelhard,K. Ravi, Development of high-temperature ferromagnetism in SnO2 and para-magnetism in SnO2 by Fe doping, Phys. Rev. B 72(5), 054402 (2005); https://doi.org/10.1103/PhysRevB.72.054402.
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169(1996); https://doi.org/10.1103/PhysRevB.54.11169.
A. Breuer,X.C.Wang, M.R.Chebyshev, Filtering for SCF iteration, with applications in real-space DFT, Journal of Computational Physics, 374, 27-46(2018), https://doi.org/10.1016/j.jcp.2017.12.007.
C.Temperton, A new set of minimum-add small-n rotated DFT modules, Journal of Computational Physics, 75(1),190-198(1988), https://doi.org/10.1016/0021-9991(88)90106-4.
H. Wang, Y. Yan, X. Du, X. Liu, K. Li, H. Jin, Origin of ferromagnetism in Ni-doped SnO2: First-principles calculation, Journal of Applied Physics 107(10), 103923 (2010); https://doi.org/10.1063/1.3428473.
X.L. Wang, Z.X. Dai, Z. Zeng, Search for ferromagnetism in SnO2 doped with transition metals (V, Mn, Fe, and Co), Journal of Physics: Condensed Matter, 20(4), (2008); https://doi.org/10.1088/0953-8984/20/04/045214.
FH Aragón, JAH Coaquira, P Hidalgo, SLM Brito, D Gouvêa, RHR Castro. Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles, Journal of Physics: Condensed Matter, 22(49), 496003(2010); https://doi.org/10.1088/0953-8984/22/49/496003.
J. Zhang,Q. Yun,Q. Wang, Room Temperature Ferromagnetism of Ni-doped SnO2 System, Modern Applied Science, 4(11), 124-130(2010); https://doi.org/10.5539/mas.v4n11p124.
T. Ali, Enhanced room temperature ferromagnetism in Ni doped SnO2 nanoparticles: A comprehensive study, Journal of Applied Physics, 122(8), 083906 (2017); https://doi.org/10.1063/1.4999830.
M.H.Abdi, N.B. Ibrahim, H.Baqiah, S.A.Halim, Structural, electrical, and magnetic characterization of nickel-doped tin oxide film by a sol–gel method, Scientia Iranica 21(6), 2459-2467 (2014); https://scientiairanica.sharif.edu/article_3636.html.
Comments (0)