Enhancing surgical navigation: a robust hand–eye calibration method for the Microsoft HoloLens 2

Fuchs K (2002) Minimally invasive surgery. Endoscopy 34(02):154–159

Article  CAS  PubMed  Google Scholar 

Strauss KJ, Kaste SC (2006) The ALARA (as low as reasonably achievable) concept in pediatric interventional and fluoroscopic imaging: striving to keep radiation doses as low as possible during fluoroscopy of pediatric patients-a white paper executive summary. Pediatr Radiol 36(2):110–112

Article  PubMed  PubMed Central  Google Scholar 

White AD, Mushtaq F, Raw RK, Giles OT, Crook IC, Tomlinson J, Miskovic D, Lodge JPA, Wilkie RM, Mon-Williams M (2016) Does monitor position influence visual-motor performance during minimally invasive surgery? J Surg Simul 3:1–7

Article  Google Scholar 

Mu Y, Hocking D, Wang ZT, Garvin GJ, Eagleson R, Peters TM (2020) Augmented reality simulator for ultrasound-guided percutaneous renal access. Int J Comput Assist Radiol Surg 15(5):749–757

Article  PubMed  Google Scholar 

Condino S, Turini G, Parchi PD, Viglialoro RM, Piolanti N, Gesi M, Ferrari M, Ferrari V (2018) How to build a patient-specific hybrid simulator for orthopaedic open surgery: Benefits and limits of mixed-reality using the microsoft hololens. J Healthc Eng 2018(1):5435097

PubMed  PubMed Central  Google Scholar 

Gong RH, Jenkins B, Sze RW, Yaniv ZR (2014) A cost effective and high fidelity fluoroscopy simulator using the Image-Guided Surgery Toolkit (IGSTK). In: Yaniv, Z.R., Holmes, D.R. III (eds.) Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 9036, p. 903618. SPIE

Ivan ME, Eichberg DG, Di L, Shah AH, Luther EM, Lu VM, Komotar RJ, Urakov TM (2021) Augmented reality head-mounted display-based incision planning in cranial neurosurgery: a prospective pilot study. Neurosurg Focus 51(2):3

Article  Google Scholar 

Fick T, Doormaal JAM, Hoving EW, Regli L, Doormaal TPC (2021) Holographic patient tracking after bed movement for augmented reality neuronavigation using a head-mounted display. Acta Neurochir 163(4):879–884

Article  CAS  PubMed  Google Scholar 

Gsaxner C, Li J, Pepe A, Schmalstieg D, Egger J (2021) Inside-out instrument tracking for surgical navigation in augmented reality. In: Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology. VRST ’21. Association for Computing Machinery, New York, NY, USA

Haxthausen F, Moreta-Martinez R, Lastra A, Pascau J, Ernst F (2022) Ultrarsound: in situ visualization of live ultrasound images using hololens 2. Int J Comput Assist Radiol Surg 17(11):2081–2091

Article  Google Scholar 

Li H, Yan W, Liu D, Qian L, Yang Y, Liu Y, Zhao Z, Ding H, Wang G (2023) EVD Surgical Guidance with Retro-Reflective Tool Tracking and Spatial Reconstruction using Head-Mounted Augmented Reality Device . arXiv:2306.15490

Martin-Gomez A, Li H, Song T, Yang S, Wang G, Ding H, Navab N, Zhao Z, Armand M (2024) STTAR: surgical tool tracking using off-the-shelf augmented reality head-mounted displays. IEEE Trans Visual Comput Graphics 30(7):3578–3593

Article  Google Scholar 

Li R, Tong Y, Yang T, Guo J, Si W, Zhang Y, Klein R, Heng P-A (2021) Towards quantitative and intuitive percutaneous tumor puncture via augmented virtual reality. Comput Med Imaging Graph 90:101905

Meulstee JW, Nijsink J, Schreurs R, Verhamme LM, Xi T, Delye HHK, Borstlap WA, Maal TJJ (2019) Toward holographic-guided surgery. Surg Innov 26(1):86–94

Article  PubMed  Google Scholar 

Gao Y, Liu K, Lin L, Wang X, Xie L (2022) Use of augmented reality navigation to optimise the surgical management of craniofacial fibrous dysplasia. Br J Oral Maxillofac Surg 60(2):162–167

Article  CAS  PubMed  Google Scholar 

Tu P, Qin C, Guo Y, Li D, Lungu AJ, Wang H, Chen X (2022) Ultrasound image guided and mixed reality-based surgical system with real-time soft tissue deformation computing for robotic cervical pedicle screw placement. IEEE Trans Biomed Eng 69(8):2593–2603

Kim JW, Jarzembak J, Kim K (2023) Bimanual intravenous needle insertion simulation using nonhomogeneous haptic device integrated into mixed reality. Sensors 23(15):6697

Article  PubMed  PubMed Central  Google Scholar 

Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642

Horaud R, Dornaika F (1995) Hand-eye calibration. Int J Robot Res 14(3):195–210

Article  Google Scholar 

Morgan I, Jayarathne U, Rankin A, Peters TM, Chen ECS (2017) Hand-eye calibration for surgical cameras: a procrustean perspective-n-point solution. Int J Comput Assist Radiol Surg 12(7):1141–1149

Article  PubMed  Google Scholar 

Brown AJV, Uneri A, De Silva TS, Manbachi A, Siewerdsen JH (2018) Design and validation of an open-source library of dynamic reference frames for research and education in optical tracking. J Med Imaging 5(2):021215

Article  Google Scholar 

Ungureanu D, Bogo F, Galliani S, Sama P, Duan X, Meekhof C, Stühmer J, Cashman TJ, Tekin B, Schönberger JL, Olszta P, Pollefeys M (2020) Hololens 2 research mode as a tool for computer vision research. CoRR arXiv:2008.11239

Stachniss C, Leonar JJ, Thrun S (2016) Simultaneous Localization and Mapping. Handbook of Robotics, pp. 1153–1175. Springer

Doughty M, Ghugre NR, Wright GA (2022) Augmenting performance: a systematic review of optical see-through head-mounted displays in surgery. J Imaging 8(7):203. https://doi.org/10.3390/jimaging8070203

Article  PubMed  PubMed Central  Google Scholar 

Thabit A, Benmahdjoub M, Veelen M-LC, Niessen WJ, Wolvius EB, Walsum T (2022) Augmented reality navigation for minimally invasive craniosynostosis surgery: a phantom study. Int J Comput Assist Radiol Surg 17(8):1453–1460

Article  PubMed  PubMed Central  Google Scholar 

Groves LA, Carnahan P, Allen DR, Adam R, Peters TM, Chen ECS (2019) Accuracy assessment for the co-registration between optical and vive head-mounted display tracking. Int J Comput Assist Radiol Surg 14(7):1207–1215

Article  PubMed  Google Scholar 

Comments (0)

No login
gif