Activation of Induced Systemic Resistance in Cotton Plants Against Fusarium and Macrophomina by Microbial Antagonists

Abd-Elsalam KA (2010) Genetical and biological control of cotton ashy stem caused by Macrophomina phaseolina in outdoor pot experiment. Saudi J Biol Sci 17(2):147–152. https://doi.org/10.1016/j.sjbs.2010.02.008

Article  PubMed  PubMed Central  Google Scholar 

Abdel-Motaal FF, Kamel NM, El-Zayat SA, Mohamed AE-HH, Darwish DB (2022) Plant seedling growth stimulation and antifungal activities of volatile organic compounds emitted by Aspergillus flavus endophyte. J Appl Biotechnol Rep 9(4):831–840. https://doi.org/10.30491/jabr.2022.335430.1514

Article  CAS  Google Scholar 

Abdel-Wareth MTATA, Ali EAM, El-Shazly MA (2023) Biological activity and GC-MS/MS analysis of extracts of endophytic fungi isolated from Eichhornia crassipes (Mart.) solms. J Appl Biotechnol Rep 10(1):895–909. https://doi.org/10.30491/jabr.2022.359352.1559

Article  CAS  Google Scholar 

Adrees H, Haider MS, Anjum T, Akram W (2019) Inducing systemic resistance in cotton plants against charcoal root rot pathogen using indigenous rhizospheric bacterial strains and chemical elicitors. Crop Prot 115:75–83. https://doi.org/10.1016/j.cropro.2018.09.011

Article  CAS  Google Scholar 

Aji N, Kumala S, Mumpuni E, Rahmat D (2022) Antibacterial activity and active fraction of Zingiber officinale Roscoe, Zingiber montanum (J.Koenig) Link ex A., and Zingiber zerumbet (L.) Roscoe ex Sm. against Propionibacterium acnes. Pharmacogn J. https://doi.org/10.5530/pj.2022.14.15

Article  Google Scholar 

Aladesanmi JA, Odiba EO, Odediran AS, Oriola OA (2022) Antiplasmodial activities of the stem bark extract of Artocarpus altilis Forsberg. Afr J Infect Dis 16(2 Suppl):33–45. https://doi.org/10.21010/Ajid.v16i2S.5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali SAM, Sayyed RZ, Mir MI, Khan MY, Hameeda B, Alkhanani MF, Haque S, Mohammad Al Tawaha AR, Poczai P (2022) Induction of systemic resistance in maize and antibiofilm activity of surfactin from Bacillus velezensis MS20. Front Microbiol. https://doi.org/10.3389/fmicb.2022.879739

Article  PubMed  PubMed Central  Google Scholar 

Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N (2019) Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants. https://doi.org/10.3390/plants8040096

Article  PubMed  PubMed Central  Google Scholar 

Baiome AB, Ye X, Yuan Z, Gaafar Yahya ZA, Melak S, Cao H (2022) Identification of volatile organic compounds produced by Xenorhabdus indica strain AB and investigation of their antifungal activities. Appl Environ Microbiol 88(13):e00155-e1122. https://doi.org/10.1128/aem.00155-22

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becerril R, Precone M, Nerin C (2023) Antibiofilm activity of LAE (ethyl lauroyl arginate) against food-borne fungi and its application in polystyrene surface coating. Food Microbiol 113:104284. https://doi.org/10.1016/j.fm.2023.104284

Article  CAS  PubMed  Google Scholar 

Belakhov VV, Shenin YD, Ionin BI (2010) Synthesis and antifungal activity of N-aryl-substituted pimaricin derivatives. Pharm Chem J 44(9):486–492. https://doi.org/10.1007/s11094-010-0498-2

Article  CAS  Google Scholar 

Bhagat N, Raghav M, Dubey S, Bedi N (2021) Bacterial exopolysaccharides: insight into their role in plant abiotic stress tolerance. J Microbiol Biotechnol 31(8):1045–1059. https://doi.org/10.4014/jmb.2105.05009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouchard-Rochette M, Machrafi Y, Cossus L, Thuy An Nguyen T, Antoun H, Droit A, Tweddell RJ (2022) Bacillus pumilus PTB180 and Bacillus subtilis PTB185: Production of lipopeptides, antifungal activity, and biocontrol ability against Botrytis cinerea. Biol Control 170:104925. https://doi.org/10.1016/j.biocontrol.2022.104925

Article  CAS  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Article  CAS  PubMed  Google Scholar 

Brescia F, Vlassi A, Bejarano A, Seidl B, Marchetti-Deschmann M, Schuhmacher R, Puopolo G (2021) Characterisation of the antibiotic profile of Lysobacter capsici AZ78, an effective biological control agent of plant pathogenic microorganisms. Microorganisms. https://doi.org/10.3390/microorganisms9061320

Article  PubMed  PubMed Central  Google Scholar 

Butt AT, Thomas MS (2017) Iron acquisition mechanisms and their role in the virulence of Burkholderia species. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2017.00460

Article  PubMed  PubMed Central  Google Scholar 

Calvo H, Mendiara I, Arias E, Gracia AP, Blanco D, Venturini ME (2020) Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biol Technol 166:111208. https://doi.org/10.1016/j.postharvbio.2020.111208

Article  CAS  Google Scholar 

Chakraborty M, Mahmud NU, Gupta DR, Tareq FS, Shin HJ, Islam T (2020) Inhibitory effects of linear lipopeptides from a marine Bacillus subtilis on the wheat blast fungus Magnaporthe oryzae Triticum. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00665

Article  PubMed  PubMed Central  Google Scholar 

Chatterjee DK, Raether W, Iyer N, Ganguli BN (1984) Caerulomycin, an antifungal antibiotic with marked in vitro and in vivo activity against Entamoeba histolytica. Z Parasitenkd 70(5):569–573. https://doi.org/10.1007/BF00926587

Article  CAS  PubMed  Google Scholar 

Chaves-Gómez JL, Chavez-Arias CC, Cotes Prado AM, Gómez-Caro S, Restrepo-Díaz H (2019) Physiological response of cape gooseberry seedlings to three biological control agents under Fusarium oxysporum f. sp. physali infection. Plant Dis 104(2):388–397. https://doi.org/10.1094/PDIS-03-19-0466-RE

Article  PubMed  Google Scholar 

Chellappandian M, Senthil-Nathan S, Karthi S, Vasantha-Srinivasan P, Kalaivani K, Hunter WB, Ali AM, Veerabahu C, Elshikh MS, Al Farraj DA (2022) Larvicidal and repellent activity of N-methyl-1-adamantylamine and oleic acid a major derivative of bael tree ethanol leaf extracts against dengue mosquito vector and their biosafety on natural predator. Environ Sci Pollut Res 29(11):15654–15663. https://doi.org/10.1007/s11356-021-16219-w

Article  CAS  Google Scholar 

COCPC (2023) Cotton sector. committee on cotton production and consumption. https://texmin.nic.in/sites/default/files/Annexure-VII-Note%20on%20Cotton%20Sector.pdf. Accessed 28 June 2024

da Silva MB, Davis RF, Doan HK, Nichols RL, Kemerait RC, Halpern HC, Brewer MT, Jagdale G, Chee PW (2019) Fusarium wilt of cotton may commonly result from the interaction of Fusarium oxysporum f. sp. vasinfectum with Belonolaimus longicaudatus. J Nematol 51(1):1–10. https://doi.org/10.21307/jofnem-2019-015

Article  CAS  PubMed  Google Scholar 

David WAL, Gardiner BOC (1958) Fluoroacetamide as a systemic insecticide. Nature 181(4626):1810–1810. https://doi.org/10.1038/1811810a0

Article  CAS  PubMed  Google Scholar 

De Simone N, López L, Ciudad CS, Scauro A, Russo P, Rodríguez J, Spano G, Martínez B (2024) Antifungal activity of Lactiplantibacillus plantarum isolated from fruit and vegetables and detection of novel antifungal VOCs from fungal-LAB co-cultures. Food Biosci 58:103824. https://doi.org/10.1016/j.fbio.2024.103824

Article  CAS  Google Scholar 

Degani O, Becher P, Gordani A (2022) Pathogenic interactions between Macrophomina phaseolina and Magnaporthiopsis maydis in mutually infected cotton sprouts. Agriculture. https://doi.org/10.3390/agriculture12020255

Article  Google Scholar 

Devi S, Kiesewalter HT, Kovács R, Frisvad JC, Weber T, Larsen TO, Kovács ÁT, Ding L (2019) Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001. Synth Syst Biotechnol 4(3):142–149. https://doi.org/10.1016/j.synbio.2019.08.002

Article  PubMed  PubMed Central  Google Scholar 

Dimopoulou A, Theologidis I, Liebmann B, Kalantidis K, Vassilakos N, Skandalis N (2019) Bacillus amyloliquefaciens MBI600 differentially induces tomato defense signaling pathways depending on plant part and dose of application. Sci Rep 9(1):19120. https://doi.org/10.1038/s41598-019-55645-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fincheira P, Parada M, Quiroz A (2017) Volatile organic compounds stimulate plant growing and seed germination of Lactuca sativa. J Soil Sci Plant Nutr 17(4):853–867

Comments (0)

No login
gif