Novel approaches of mycosynthesized zinc oxide nanoparticles (ZnONPs) using Pleurotus sajor-caju extract and their biological and environmental applications

Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces b: Biointerfaces, 28(4), 313–318. https://doi.org/10.1016/S0927-7765(02)00174-1

Article  CAS  Google Scholar 

Alavi, M., & Nokhodchi, A. (2021). Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discovery Today, 26(8), 1953–1962. https://doi.org/10.1016/j.drudis.2021.03.030

Article  CAS  Google Scholar 

Ann, L. C., Mahmud, S., Bakhori, S. K. M., Sirelkhatim, A., Mohamad, D., Hasan, H., & Rahman, R. A. (2014). Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceramics International, 40(2), 2993–3001. https://doi.org/10.1016/j.ceramint.2013.10.008

Article  CAS  Google Scholar 

Antunes, F., Marçal, S., Taofiq, O., Morais, A. M. M. B., Freitas, A. C., Ferreira, I. C. F. R., & Pintado, M. (2020). Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules, 25(11), 2672. https://doi.org/10.3390/molecules25112672

Article  CAS  Google Scholar 

Aramwit, P., Porasuphatana, S., Srichana, T., & Nakpheng, T. (2015). Toxicity evaluation of cordycepin and its delivery system for sustained in vitro anti-lung cancer activity. Nanoscale Research Letters, 10, 1–10. https://doi.org/10.1186/s11671-015-0851-1

Article  CAS  Google Scholar 

Arfors, K. E., & Ley, K. (1993). Sulfated polysaccharides in inflammation. The Journal of Laboratory and Clinical Medicine, 121(2), 201–202.

CAS  Google Scholar 

Banumathi, B., Vaseeharan, B., Ishwarya, R., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., & Benelli, G. (2017). Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitology Research, 116, 1637–1651. https://doi.org/10.1007/s00436-017-5438-6

Article  Google Scholar 

Batool, M., Saba, M., & Albsher, G. (2023). Wild Mushroom (Ganoderma multipileum) as Biosource for Zinc oxide Nanoparticles: From Synthesis to Enhance Biological Applications. Authorea Preprints.

Bhat, R., Deshpande, R., Ganachari, S. V., Huh, D. S., & Venkataraman, A. (2011). Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorganic Chemistry and Applications, 2011(1), 650979.

Google Scholar 

Center, M. M., & Jemal, A. (2011). International trends in liver cancer incidence rates. Cancer Epidemiology, Biomarkers & Prevention, 20(11), 2362–2368.

Article  Google Scholar 

Chauhan, N., Thakur, N., Kumari, A., Khatana, C., & Sharma, R. (2023). Mushroom and silk sericin extract mediated ZnO nanoparticles for removal of organic pollutants and microorganisms. South African Journal of Botany, 153, 370–381. https://doi.org/10.1016/j.sajb.2023.01.001

Article  CAS  Google Scholar 

Da Silva Campelo, M., Neto, J. F. C., Magalhães, H. C. R., Alves Filho, E. G., Zocolo, G. J., Leal, L. K. A. M., & Ribeiro, M. E. N. P. (2024). GC/MS and 2D NMR-based approach to evaluate the chemical profile of hydroalcoholic extract from Agaricus blazei Murill and its anti-inflammatory effect on human neutrophils. Journal of Ethnopharmacology, 322, 117676. https://doi.org/10.1016/j.jep.2023.117676

Article  CAS  Google Scholar 

Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293–346. https://doi.org/10.1021/cr030698+

Article  CAS  Google Scholar 

Darezereshki, E., Alizadeh, M., Bakhtiari, F., Schaffie, M., & Ranjbar, M. (2011). A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions. Applied Clay Science, 54(1), 107–111. https://doi.org/10.1016/j.clay.2011.07.023

Article  CAS  Google Scholar 

Deveci, E., Tel-Çayan, G., Çayan, F., Yılmaz Altınok, B., & Aktaş, S. (2024). Characterization of polysaccharide extracts of four edible mushrooms and determination of in vitro antioxidant. Enzyme Inhibition and Anticancer Activities ACS Omega. https://doi.org/10.1021/acsomega.4c00322

Article  Google Scholar 

Dias, C., Ayyanar, M., Amalraj, S., Khanal, P., Subramaniyan, V., Das, S., & Gurav, S. (2022). Biogenic synthesis of zinc oxide nanoparticles using mushroom fungus Cordyceps militaris: Characterization and mechanistic insights of therapeutic investigation. Journal of Drug Delivery Science and Technology, 73, 103444. https://doi.org/10.1016/j.jddst.2022.103444

Article  CAS  Google Scholar 

Elangovan, M., Santhoshkumar, M., Selvaraj, K., Sathishkumar, K., Kumar, M., Jothinathan, M. K. D., & Rajesh, K. (2024). Sunlight-driven photocatalytic and anticancer properties of biogenic synthesized gold nanoparticles (AuNPs) employing Polygala elongata. Journal of King Saud University-Science, 36, 103158. https://doi.org/10.1016/j.jksus.2024.103158

Article  Google Scholar 

Ellappan, K., Narasimha, H. B., & Kumar, S. (2018). Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. Journal of Global Antimicrobial Resistance, 12, 37–43. https://doi.org/10.1016/j.jgar.2017.08.018

Article  Google Scholar 

El-Sonbaty, S., Kandil, E. I., & Haroun, R. A. H. (2023). Assessment of the antitumor activity of green biosynthesized zinc nanoparticles as therapeutic agent against renal cancer in rats. Biological Trace Element Research, 201(1), 272–281. https://doi.org/10.1007/s12011-022-03126-5

Article  CAS  Google Scholar 

Eskandari, M., Haghighi, N., Ahmadi, V., Haghighi, F., & Mohammadi, S. R. (2011). Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass. Physica B: Condensed Matter, 406(1), 112–114. https://doi.org/10.1016/j.physb.2010.10.035

Article  CAS  Google Scholar 

Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., & Bray, F. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386. https://doi.org/10.1002/ijc.29210

Article  CAS  Google Scholar 

Gupta, M., Tomar, R. S., Kaushik, S., Mishra, R. K., & Sharma, D. (2018). Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Frontiers in Microbiology, 9, 2030. https://doi.org/10.3389/fmicb.2018.02030

Article  Google Scholar 

Gurunathan, S., Raman, J., Malek, S. N. A., John, P. A., & Vikineswary, S. (2013). Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. International Journal of Nanomedicine, 4399–4413.

Hayat, K., Gondal, M. A., Khaled, M. M., Ahmed, S., & Shemsi, A. M. (2011). Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Applied Catalysis A: General, 393(1–2), 122–129. https://doi.org/10.1016/j.apcata.2010.11.03210.1155/2011/650979

Article  CAS  Google Scholar 

Islami, F., Goding Sauer, A., Miller, K. D., Siegel, R. L., Fedewa, S. A., Jacobs, E. J., & Jemal, A. (2018). Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA: A Cancer Journal for Clinicians, 68(1), 31–54. https://doi.org/10.3322/caac.21440

Article  Google Scholar 

Ismail, E. H., Saqer, A. M., Assirey, E., Naqvi, A., & Okasha, R. M. (2018). Successful green synthesis of gold nanoparticles using a Corchorus olitorius extract and their antiproliferative effect in cancer cells. International journal of molecular sciences, 19(9), 2612. https://doi.org/10.3390/ijms19092612

Article  CAS  Google Scholar 

Jegadeesh, R., Raaman, N., Hariprasath, L., Ramesh, V., & Srikumar, R. (2014). Hypolipidemic effect of Pleurotus djamor var. roseus in experimentally induced hypercholesteromic rats. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(2), 581–588.

Google Scholar 

Kadam, V. V., Ettiyappan, J. P., & Balakrishnan, R. M. (2019). Mechanistic insight into the endophytic fungus mediated synthesis of protein capped ZnO nanoparticles. Materials Science and Engineering: B, 243, 214–221. https://doi.org/10.1016/j.mseb.2019.04.017

Article  CAS  Google Scholar 

Kairyte, K., Kadys, A., & Luksiene, Z. (2013). Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology B: Biology, 128, 78–84. https://doi.org/10.1016/j.jphotobiol.2013.07.017

Article  CAS  Google Scholar 

Kalishwaralal, K., Deepak, V., Pandian, S. R. K., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., & Gurunathan, S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces b: Biointerfaces, 77(2), 257–262. https://doi.org/10.1016/j.colsurfb.2010.02.007

Article  CAS  Google Scholar 

Kavitha, S., Ranjith, R., Jayamani, N., Vignesh, S., Palanivel, B., Djellabi, R., & Alharthi, F. A. (2022). Fabrication of visible-light-responsive TiO2/α-Fe2O3-heterostructured composite for rapid photo-oxidation of organic pollutants in water. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-021-06971-7

Article  Google Scholar 

Khatami, M., Varma, R. S., Zafarnia, N., Yaghoobi, H., Sarani, M., & Kumar, V. G. (2018). Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustainable Chemistry and Pharmacy, 10, 9–15. https://doi.org/10.1016/j.scp.2018.08.001

Article  Google Scholar 

Kim, D. J., Kang, Y. H., Kim, K. K., Kim, T. W., Park, J. B., & Choe, M. (2017). Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells. Nutrition Research and Practice, 11(3), 180–189. https://doi.org/10.4162/nrp.2017.11.3.180

Article  CAS  Google Scholar 

Krishnamoorthy, V., Hiller, D. B., Ripper, R., Lin, B., Vogel, S. M., Feinstein, D. L., & Weinberg, G. L. (2012). Epinephrine induces rapid deterioration in pulmonary oxygen exchange in intact, anesthetized rats: A flow and pulmonary capillary pressure-dependent phenomenon. The Journal of the American Society of Anesthesiologists, 117(4), 745–754. https://doi.org/10.1097/ALN.0b013e31826a7da7

Article  CAS 

Comments (0)

No login
gif