Al-Obaidi M, Bahadoran A, Har LS, Mui WS, Rajarajeswaran J, Zandi K, Manikam R, Sekaran SD (2017) Japanese encephalitis virus disrupts blood-brain barrier and modulates apoptosis proteins in THBMEC cells. Virus research 233:17–28. https://doi.org/10.1016/j.virusres.2017.02.012
Article CAS PubMed Google Scholar
Anderson CE, Tomlinson GS, Pauly B, Brannan FW, Chiswick A, Brack-Werner R, Simmonds P, Bell JE (2003) Relationship of Nef-positive and GFAP-reactive astrocytes to drug use in early and late HIV infection. Neuropathol Appl Neurobiol 29:378–388
Article CAS PubMed Google Scholar
Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, Marfin AA, Solomon T, Tsai TF, Tsu VD, Ginsburg AS (2011) Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89(10):766-774E. https://doi.org/10.2471/BLT.10.085233
Article PubMed PubMed Central Google Scholar
Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354(6):610–621. https://doi.org/10.1056/NEJMra052723
Article CAS PubMed Google Scholar
Chauhan A, Mehla R, Vijayakumar TS, Handy I (2014) Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology 456–457:1–19
Chen CJ, Ou YC, Lin SY, Raung SL, Liao SL, Lai CY, Chen SY, Chen JH (2010) Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J Gen Virol 91:1028–1037. https://doi.org/10.1099/vir.0.013565-0
Article CAS PubMed Google Scholar
Chen ST, Liu RS, Wu MF, Lin YL, Chen SY, Tan DT, Chou TY, Tsai IS, Li L, Hsieh SL (2012) CLEC5A regulates Japanese encephalitis virus-induced neuroinflammation and lethality. PLoS Pathog 8(4):e1002655. https://doi.org/10.1371/journal.ppat.1002655
Article CAS PubMed PubMed Central Google Scholar
Chen CJ, Ou YC, Li JR, Chang CY, Pan HC, Lai CY, Liao SL, Raung SL, Chang CJ (2014) Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier. J Virol 88(2):1150–1161. https://doi.org/10.1128/JVI.02738-13
Article CAS PubMed PubMed Central Google Scholar
Choi JY, Kim JH, Patil AM, Kim SB, Uyangaa E, Hossain FMA et al (2017) Exacerbation of Japanese Encephalitis by CD11c(hi) Dendritic Cell Ablation Is Associated with an Imbalance in Regulatory Foxp3(+) and IL-17(+)CD4(+) Th17 Cells and in Ly-6C(hi) and Ly-6C(lo) Monocytes. Immune Netw 17(3):192–200. https://doi.org/10.4110/in.2017.17.3.192. PMID:28680381;PubMedCentralPMCID:PMC5484650
Article PubMed PubMed Central Google Scholar
Chowdhury P, Khan SA (2019) Differential Expression Levels of Inflammatory Chemokines and TLRs in Patients Suffering from Mild and Severe Japanese Encephalitis. Viral Immunol 32(1):68–74. https://doi.org/10.1089/vim.2018.0103
Article CAS PubMed Google Scholar
Christensen JE, Nansen A, Moos T, Lu B, Gerard C, Christensen JP, Thomsen AR (2004) Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3. The Journal of neuroscience : the official journal of the Society for Neuroscience 24(20):4849–4858. https://doi.org/10.1523/JNEUROSCI.0123-04.2004
Article CAS PubMed Google Scholar
Christensen JE, Simonsen S, Fenger C, Sørensen MR, Moos T, Christensen JP, Finsen B, Thomsen AR (2009) Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade. J Immunol 182(2):1079–1087. https://doi.org/10.4049/jimmunol.182.2.1079
Article CAS PubMed Google Scholar
Das S, Dutta K, Kumawat KL, Ghoshal A, Adhya D, Basu A (2011) Abrogated inflammatory response promotes neurogenesis in a murine model of Japanese encephalitis. PloS One 6(3):e17225. https://doi.org/10.1371/journal.pone.0017225
Article CAS PubMed PubMed Central Google Scholar
Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH (2016) Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol 131:347–63
Dutta K, Mishra MK, Nazmi A, Kumawat KL, Basu A (2010) Minocycline differentially modulates macrophage mediated peripheral immune response following Japanese encephalitis virus infection. Immunobiology 215(11):884–893. https://doi.org/10.1016/j.imbio.2009.12.003
Article CAS PubMed Google Scholar
Dwibedi B, Mohapatra N, Rathore SK, Panda M, Pati SS, Sabat J, Thakur B, Panda S, Kar SK (2015) An outbreak of Japanese encephalitis after two decades in Odisha, India. Indian J Med Res 142(Suppl 1):S30–S32. https://doi.org/10.4103/0971-5916.176609
Article CAS PubMed PubMed Central Google Scholar
Endy TP, Nisalak A (2002) Japanese encephalitis virus: ecology and epidemiology. Curr Top Microbiol Immunol 267:11–48. https://doi.org/10.1007/978-3-642-59403-8_2
Article CAS PubMed Google Scholar
Fang J, Sun L, Peng G, Xu J, Zhou R, Cao S, Chen H, Song Y (2013) Identification of three antiviral inhibitors against Japanese encephalitis virus from library of pharmacologically active compounds 1280. PloS One 8(11):e78425. https://doi.org/10.1371/journal.pone.0078425
Article CAS PubMed PubMed Central Google Scholar
Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145
Article CAS PubMed Google Scholar
Fekete R, Cserép C, Lénárt N, Tóth K, Orsolits B, Martinecz B et al (2018) Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathol 136:461–482
Article CAS PubMed PubMed Central Google Scholar
German AC, Myint KS, Mai NT, Pomeroy I, Phu NH, Tzartos J et al (2006) A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Trans R Soc Trop Med Hyg 100(12):1135–45. https://doi.org/10.1016/j.trstmh.2006.02.008. PMID: 16814333
Ghosh J, Swarup V, Saxena A, Das S, Hazra A, Paira P, Banerjee S, Mondal NB, Basu A (2008) Therapeutic effect of a novel anilidoquinoline derivative, 2-[2-methyl-quinoline-4ylamino]-N-[2-chlorophenyl]-acetamide, in Japanese encephalitis: correlation with in vitro neuroprotection. Int J Antimicrob Agents 32(4):349–354. https://doi.org/10.1016/j.ijantimicag.2008.05.001
Article CAS PubMed Google Scholar
Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, Koli P, Sen E, Basu A (2007) Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 55(5):483–496. https://doi.org/10.1002/glia.20474
Glasner DR, Ratnasiri K, Puerta-Guardo H et al (2017) Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog 13:e1006673
Article PubMed PubMed Central Google Scholar
Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM (2005) Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202(8):1087–1098. https://doi.org/10.1084/jem.20042530
Article CAS PubMed PubMed Central Google Scholar
Glass WG, Hickey MJ, Hardison JL, Liu MT, Manning JE, Lane TE (2004) Antibody targeting of the CC chemokine ligand 5 results in diminished leukocyte infiltration into the central nervous system and reduced neurologic disease in a viral model of multiple sclerosis. J Immunol [Baltimore, Md. : 1950] 172(7):4018–4025. https://doi.org/10.4049/jimmunol.172.7.4018
Article CAS PubMed Google Scholar
Gough DJ, Messina NL, Clarke CJ, Johnstone RW, Levy DE (2012) Constitutive type I interferon modulates homeostatic balance through tonic signaling. Immunity 36:166–174
Comments (0)