Egeland CP, Pickering TR. Cruel traces: bone surface modifications and their relevance to forensic science. Wiley Interdisciplinary Reviews: Forensic Sci. 2021;3. http://doi.org/10.002/wfs2.1400.
Di Nunno N, Costantinides F, Vacca M, Di Nunno C. Dismemberment: a review of the literature and description of 3 cases. Am J Forensic Med. 2006;27(4):307–12. https://doi.org/10.1097/01.paf.0000188170.55342.69.
Konopka T, Strona M, Bolechała F, Kunz J. Corpse dismemberment in the material collected by the Department of Forensic Medicine, Cracow, Poland. Leg Med. 2007;9(1):1–13. https://doi.org/10.1016/j.legalmed.2006.08.008.
Correia PM. Fire modification of bone: a review of the literature. Forensic Taphonomy: Postmortem Fate Hum Remains 1997;275–93.
Ross AH, Humphries A, Cunha E. The pattern of violence and aggression. Dismemberments. 2019;183–94. https://doi.org/10.1016/B978-0-12-811912-9.00012-5.
Ubelaker DH. The forensic evaluation of burned skeletal remains: a synthesis. Forensic Sci Int. 2009;183(1–3):1–5. https://doi.org/10.1016/j.forsciint.2008.09.019.
Jose N, Varghese KA, Venugopal S, Kingsley D. A study on determining the Effect of Acid on bones. Specialusis Ugdymas. 2022;1(43):8141–8.
Amadasi A, Camici A, Porta D, Cucca L, Merli D, Milanese C, Cattaneo C. Assessment of the effects exerted by acid and alkaline solutions on bone: is chemistry the answer? J Forensic Sci. 2017;62(5):1297–303. https://doi.org/10.1111/1556-4029.13429.
Article CAS PubMed Google Scholar
Vásquez C, Ospina JG, Castaño CF. Factores asociados a la identificación De Cuerpos descuartizados o desmembrados en Medellín (Colombia). Revista española De Med Legal: órgano de la Asociación Nac De Médicos Forenses. 2021;47(1):9–15. https://doi.org/10.1016/j.reml.2019.12.001.
Hartnett KM, Fulginiti LC, Di Modica F. The effects of corrosive substances on human bone, teeth, hair, nails, and soft tissue. J Forensic Sci. 2011;44(3):461–69. https://doi.org/10.1111/j.1556-4029.2011.01752.x.
Gentile G, Tambuzzi S, Andreola S, Bailo P, Bilato G, Gorini I, Zoja R. Analysis of the corrosive effects of hydrochloric acid (HCl) on human bone: preliminary microscopic study and observations for forensic purposes. Forensic Sci Int b. 2021;329:111095. https://doi.org/10.1016/j.forsciint.2021.111095.
Mazza A, Merlati G, Savio C, Fassina G, Menghini P, Danesino P. Observations on dental structures when placed in contact with acids: experimental studies to aid identification processes. J Forensic Sci. 2005;50(2):406–10. https://doi.org/10.13140/2.1.2157.2488.
Article CAS PubMed Google Scholar
Holden HS, Keith Simpson. The acid-bath murder(s): Rex v. John George Haigh. Police J. 1950;23(3):190–202. https://doi.org/10.1177/0032258X5002300306.
Jones CA, Bracewell T. Scanning electron microscopy (SEM) and macroscopic analysis of immature human permanent molar immersion in hydrochloric acid (HCL, 38%). J Forensic Leg Med. 2022;90:102385. https://doi.org/10.1016/j.jflm.2022.102385.
Vermeij E, Zoon P, van Wijk M, Gerretsen R. Microscopic residues of bone from dissolving human remains in acids. J Forensic Sci. 2015;60(3):770–6. https://doi.org/10.1111/1556-4029.12700.
Article CAS PubMed Google Scholar
Donaldson AE, Lamont IL. Biochemistry changes that occur after death: potential markers for determining post-mortem interval. PLoS ONE. 2013;8(11):e82011.
Article PubMed PubMed Central Google Scholar
Sabolová V, Brinek A, Sládek V. The effect of hydrochloric acid on microstructure of porcine (Sus scrofa domesticus) cortical bone tissue. Forensic Sci Int. 2018;291:260–71. https://doi.org/10.1016/j.forsciint.2018.08.030.
Article CAS PubMed Google Scholar
Cleland TP, Vashishth D. Bone protein extraction without demineralization using principles from hydroxyapatite chromatography. Anal Biochem. 2015;472:62–6.
Article CAS PubMed Google Scholar
Lyon SM, Mayampurath A, Rogers MR, Wolfgeher DJ, Fisher SM, Volchenboum SL. Reid, RR. A method for whole protein isolation from human cranial bone. Anal Biochem. 2016;515:33–9.
Article CAS PubMed PubMed Central Google Scholar
Preuss J, Strehler M, Dressler J, Risse M, Anders S, Madea B. Dumping after homicide using setting in concrete and/or sealing with bricks—six case reports. Forensic Sci Int. 2006;159(1):55–60.
Article CAS PubMed Google Scholar
Cadwell LM. Macroscopic observations of the effects of corrosive substances on bone and soft tissue when subjected to heating (Doctoral dissertation, Boston University); 2018.
Gupta K, Kale AD, Hallikeremath SR, Kotrashetti VS. A histochemical comparison of methylene-blue/acid fuchsin with hematoxylin and eosin for differentiating calcification of stromal tissue. Biotech Histochem. 2012;87(4):249–56. https://doi.org/10.3109/10520295.2011.630482. Epub 2011 Nov 9. PMID: 22070801.
Article CAS PubMed Google Scholar
Maki AG. The effects of standard household chemicals containing acids on bone and soft tissue of complete pig (Sus scrofa) heads (Doctoral dissertation, Boston University); 2017.
Mizukami H, Hathway B, Procopio N. Aquatic decomposition of mammalian corpses: a forensic Proteomic Approach. J Proteome Res. 2020;19(5):2122–135. https://doi.org/10.1021/acs.jproteome.0c00060.
Article CAS PubMed Google Scholar
Robino C, Pazzi M, Di Vella G, Martinelli D, Mazzola L, Ricci U, Vincenti M. Evaluation of DNA typing as a positive identification method for soft and hard tissues immersed in strong acids. Leg Med. 2015;17(6):569–75. https://doi.org/10.1016/j.legalmed.2015.07.004.
Cope DJ, Dupras TL. The effects of household corrosive substances on human bone and teeth. In Proc. American Academy of Forensic Sciences 2009; 54(6):1238 – 246 https://doi.org/10.1111/j.1556-4029.2009.01147.x.
Comments (0)