Everything you need to know about plastic pollution. UN Environment programme. (2023). https://www.unep.org/news-and-stories/story/everything-you-need-know-about-plastic-pollution
Williams, A. T., Rangel-Buitrago, N. (2022). The past, present, and future of plastic pollution. Mar. Pollut. Bull., 176, 113429. https://doi.org/10.1016/j.marpolbul.2022.113429
Hou, Q., Zhen, M., Qian, H., Nie, Y., Bai, X., Xia, T., Rehman, M. L. U., Li, Q., Ju, M. (2021). Upcycling and catalytic degradation of plastic wastes. Cell Rep., 2(8), 100514. https://doi.org/doi:10.1016/j.xcrp.2021.100514
Yanushevska, O., Dontsova, T., Krymets, G., Kyrii, S., Krasuliak, O., Dorozhko, K. (2023). Prospects for the Catalytic Conversion of Plastic Waste. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications. Springer Proceedings in Physics, Springer, Cham., 280, 73–82. https://doi.org/10.1007/978-3-031-18104-7_5
Kyrii, S., Dontsova, T., Karaschuk, O., Yanushevska, O. (2023). State of the Art of Microplastic and Nanoplastic Pollution: Origin and Removal Methods. Springer Proceedings in Physics, Springer, Cham., 279, 229–241. https://doi.org/10.1007/978-3-031-18096-5_12
Ho, B.T., Roberts, T.K., Lucas, S. (2018). An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Crit. Rev. Biotechnol., 38(2), 308–320. https://doi.org/10.1080/07388551.2017.1355293
Marquez, C., Martin, C., Linares, N., Vos, D. (2023). Catalytic routes towards polystyrene recycling. Mater. Horiz., 10(1). https://doi.org/10.1039/D2MH01215D
Dong, D., Guo, Z., Yang, X., Dai, Y. (2024). Comprehensive understanding of the aging and biodegradation of polystyrene-based plastics. Environ Pollut. 342, 123034. https://doi.org/10.1016/j.envpol.2023.123034
Xu, L., Li, Z., Wang, L., Xu, Z., Zhang, S., Zhang, Q. (2024). Progress in polystyrene biodegradation by insect gut microbiota. World J Microbiol Biotechnol. 40(5), 143. https://doi.org/10.1007/s11274-024-03932-0
Mor, R., Sivan, A. (2008). Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene. Biodegradation, 19(6), 851–858. https://doi.org/10.1007/s10532-008-9188-0
Huang, Z., Shanmugam, M., Liu, Z., Brookfield, A., Bennett, E.L., Guan, R., Vega Herrera, D.E., Lopez-Sanchez, J.A., Slater, A.G., McInnes, E.J. L., Qi, X., Xiao, J. (2022). Chemical Recycling of Polystyrene to Valuable Chemicals via Selective Acid-Catalyzed Aerobic Oxidation under Visible Light. JACS, 144(14), 6532–6542. https://doi.org/10.1021/jacs.2c01410
Cao, R., Zhang, MQ., Hu, C., Xiao, D., Wang, M., Ma, D. (2022). Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst. Nat. Commun., 13, 4809. https://doi.org/10.1038/s41467-022-32510-x
Thambiyapillai, S., Ramanujam, M. (2021). An Experimental Investigation and Aspen HYSYS Simulation of Waste Polystyrene Catalytic Cracking Process for the Gasoline Fuel Production. Int. Journal of Renewable Energy Development, 10(4), 891–900. https://doi.org/10.14710/ijred.2021.33817
Gonzalez-Aguilar, A.M., Pérez-García, V., Riesco-Ávila, J.M. (2023). A Thermo-Catalytic Pyrolysis of Polystyrene Waste Review: A Systematic, Statistical, and Bibliometric Approach. Polymers, 15, 1582. https://doi.org/10.3390/polym15061582
Joshi, B., Raghav, H., Agrawal, A., Vempatapu, B.P., Ray, A., Sarkar, B. (2023). Sustainable production of styrene from catalytic recycling of polystyrene over potassium promoted Fe–Al2O3 catalyst. Sustainable Energy Fuels, 7(5), 1256–1264. https://doi.org/10.1039/D2SE01584F
Wang, J., Jiang, J., Sun, Y., Zhong, Z., Wang, X., Xia, H., Liu, G., Pang, S., Wang, K., Li, M., Xu, J., Ruan, R., Ragauskas, A.J. (2019). Recycling benzene and ethylbenzene from in-situ catalytic fast pyrolysis of plastic wastes. Energy Convers. Manag., 200, 112088. https://doi.org/10.1016/j.enconman.2019.112088
Miandad, R., Rehan, M., Barakat, M.A., Aburiazaiza, A.S., Khan, H., Ismail, I.M., Dhavamani, J., Gardy, J., Hassanpour, A., Nizami, A.-S. (2019). Catalytic pyrolysis of plastic waste: Moving towards pyrolysis based biorefineries. Front. Energy res., 7(27). https://doi.org/10.3389/fenrg.2019.00027
Rehan, M., Miandad, R., Barakat, M.A., Ismail, I.M.I., Almeelbi, T., Gardy, J., Hassanpour, A., Khan, M.Z., Demirbas, A., Nizami, A.S. (2017). Effect of zeolite catalysts on pyrolysis liquid oil. Int. Biodeterior. Biodegradation, 119, 162–175. https://doi.org/10.1016/j.ibiod.2016.11.015
Lerici, L. C., Renzini, M.S., Pierella, L.B. (2015). Chemical Catalyzed Recycling of Polymers: Catalytic Conversion of PE, PP and PS into Fuels and Chemicals over H-Y. Procedia Materials Science, 8, 297–303. https://doi.org/10.1016/j.mspro.2015.04.076
Dahal, R., Uusi-Kyyny, P., Pokki, J.-P., Ohra-aho, T., Alopaeus, V. (2023). Conceptual design of a distillation process for the separation of styrene monomer from polystyrene pyrolysis oil: experiment and simulation. Chem. Eng. Res. Des., 195, 65–75. https://doi.org/10.1016/j.cherd.2023.05.039
Angelopoulou, P.P., Stathouraki, M.-M., Keum, J. K., Hong, K., Avgeropoulos, А., Sakellariou, G. (2023). Synthesis and morphological characterization of linear and miktoarm star poly (solketal methacrylate)-block-polystyrene copolymers, Eur. Polym. J., 190, 111995. https://doi.org/10.1016/j.eurpolymj.2023.111995
Comments (0)