Y. Gu, Y. Li, H. Qui, et al., Coord. Chem. Rev. 497, 215425 (2023). https://doi.org/10.1016/j.ccr.2023.215425
C. Zhan, M. Moskovits, and Z.-Q. Tian, Matter 3, 42 (2020). https://doi.org/10.1016/j.matt.2020.03.019
D. Li, D. Yao, C. Li, et al., TrAC, Trends Anal. Chem. 127, 115885 (2020). https://doi.org/10.1016/j.trac.2020.115885
O. E. Eremina, A. A. Semenova, E. A. Sergeeva, et al., Russ. Chem. Rev. 87, 741 (2018). https://doi.org/10.1070/RCR4804
Z. Du, Y. Qi, J. He, et al., Nanomed. Nanobiotechnol. 13, e1672 (2020). https://doi.org/10.1002/wnan.1672
Y. Shen, J. Yue, W. Xu, and S. Xu, Theranostics 11, 4872 (2021). https://doi.org/10.7150/thno.56409
Article CAS PubMed PubMed Central Google Scholar
M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974). https://doi.org/10.1016/0009-2614(74)85388-1
M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977). https://doi.org/10.1021/ja00457a071
D. L. Jeanmaire and R. P. Van Duyne, Electroanal. Chem. 84, 1 (1977). https://doi.org/10.1016/S0022-0728(77)80224-6
V. V. Marinyuk and R. M. Lazorenko-Manevich, Sov. Electrochem. 84, 452 (1978).
C. K. Chen, A. R. B. De Castro, Y. R. Shen, and F. DeMartini, Phys. Rev. Lett. 43, 946 (1979). )https://doi.org/10.1103/PhysRevLett.43.946
D. V. Murphy, K. U. VonRaben, R. K. Chang, and P. B. Dorain, Chem. Phys. Lett. 85, 43 (1982). https://doi.org/10.1016/0009-2614(82)83457-X
A. V. Baranov and Yu. S. Bobovich, JETP Lett. 36, 339 (1982).
K. Kneipp, Y. Wang, H. Kneipp, et al., Phys. Rev. Lett. 78, 1667 (1997). https://doi.org/10.1103/PhysRevLett.78.1667
S. Nie and S. R. Emory, Science 275, 1102 (1997). https://doi.org/10.1126/science.275.5303.1102
Article CAS PubMed Google Scholar
R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000). https://doi.org/10.1016/S0009-2614(99)01451-7
M. Anderson, Appl. Phys. Lett. 76, 3130 (2000). https://doi.org/10.1063/1.126546
P. G. Etchegoin, E. C. Le Ru, and M. Meye, J. Am. Chem. Soc. 131, 2713 (2009). https://doi.org/doi 10.1021/ja808934d
Article CAS PubMed Google Scholar
J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, J. Am. Chem. Soc. 129, 16249 (2007). https://doi.org/10.1021/ja077243c
Article CAS PubMed Google Scholar
I. Milekhin, K. Anikin, N. N. Kurus, et al., Nanoscale Adv. 5, 2820 (2023). https://doi.org/10.1039/d3na00054k
Article CAS PubMed PubMed Central Google Scholar
A. V. Kazantseva, E. A. Chernykh, C. Crook, et al., J. Phys. Photonics 3, 024001 (2021). https://doi.org/10.1088/2515-7647/abdcba
R. Zhang, Y. Zhang, Z. C. Dong, et al., Nature 498, 82 (2013). https://doi.org/10.1038/nature12151
Article CAS PubMed Google Scholar
H. L. Tierney, C. J. Murphy, and E. C. H. Sykes, Phys. Rev. Lett. 106, 010801 (2011). https://doi.org/10.1103/PhysRevLett.106.010801
J. Lee, N. Tallarida, X. Chen, et al., Sci. Adv. 4, eaat5472 (2018). https://doi.org/10.1126/sciadv.aat5472
J. Lee, K. T. Crampton, N. Tallarida, and V. A. Apkarian, Nature 568, 78 (2019). https://doi.org/10.1038/s41586-019-1059-9
Article CAS PubMed Google Scholar
Y. U. Lee, G. Bimananda, M. Wisna, et al., ACS Nano 14, 7666 (2020). https://doi.org/10.1021/acsnano.0c04019
Article CAS PubMed Google Scholar
P. Biagioni, J.-S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012). https://doi.org/10.1088/0034-4885/75/2/024402
P. G. Etchegoin and E. C. Le Ru, Basic Electromagnetic Theory of SERS, Ed. by S. Schlucker (Wiley, 2011), p. 1. https://doi.org/10.1002/9783527632756.ch1
T. Iton, Frontiers in Electromagnetic Mechanism of SERS, Ed. by K. Kneipp (Word Scientific, 2017), p. 33. https://doi.org/10.1142/9781786344243_0002
A. Campion and P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998). https://doi.org/10.1039/A827241Z
K.-Q. Lin, J. Yi, J.-H. Zhong, et al., Nat. Commun. 8, 14891 (2017). https://doi.org/10.1038/ncomms14891
Article CAS PubMed PubMed Central Google Scholar
T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, J. Clust. Sci. 10, 295 (1999). https://doi.org/10.1023/A:1021977613319
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003). https://doi.org/10.1021/jp026731y
M. Hu, F. S. Ou, W. Wu, et al., J. Am. Chem. Soc. 132, 12820 (2010). https://doi.org/10.1021/ja105248h
Article CAS PubMed Google Scholar
V. Klimov and G.-Y. Guo, Phys. Chem. 114, 22398 (2010). https://doi.org/10.1021/jp105661a
A.-q. Yang, D. Wang, X. Wang, et al., RSC Adv. 5, 38354 (2015). https://doi.org/10.1039/c5ra01322d
H. Xu, J. Aizpurua, and P. Apell, Phys. Rev. 62, 4318 (2000). https://doi.org/10.1103/PhysRevE.62.4318
J. P. Camden, J. A. Dieringer, Y. Wang, et al., J. Am. Chem. Soc. 130, 12616 (2008). https://doi.org/10.1021/ja8051427
Article CAS PubMed Google Scholar
E. Hao and G. C. Schatz, J. Chem. Phys. 120, 357 (2004). https://doi.org/10.1063/1.1629280
Article CAS PubMed Google Scholar
R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Nat. Commun. 3, 825 (2012). https://doi.org/10.1038/ncomms1806
Article CAS PubMed Google Scholar
J. Zuloaga, E. Prodan, and P. Nordlander, Nano Lett. 9, 887 (2009). https://doi.org/10.1021/nl803811g
Comments (0)