Effect of Laser Beam Amplitude Profile on Second Harmonic Generation Efficiency

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).

Article  ADS  Google Scholar 

L. Esserman and S. Conradson, “Potential medical applications of UV free-electron lasers. FC6. 1988,” in Proc. Free-Electron Laser Applications in the Ultraviolet, 2–5 March 1988, Cloudcroft, New Mexico, United States (OSA, 1988), pp. 175–176.

J. Bolanos, K. Morris, E. Sanchez, I. Arevalo, V. Yamamoto, B. Kateb, and L. Kumar, “UV imaging for intraoperative Tumor delineation,” in Materials of the 20th Annual World Congress of SBMT, February 2023. https://doi.org/10.13140/RG.2.2.25245.18405

V. V. Belov, Yu. V. Gridnev, A. N. Kudryavtsev, M. V. Tarasenkov, and A. V. Fedosov, “Optoelectronic UV communication on scattered laser radiation,” Atmos. Ocean. Opt. 31 (6), 698–701 (2018).

Article  Google Scholar 

E. Gregor, J. Sorce, K. V. Palombo, D. W. Mordaunt, and M. Ehritz, “UV laser source for remote spectroscopy by multiple nonlinear conversion of a Nd:YAG laser,” 367–369 (1994). https://doi.org/10.1109/NLO.1994.470777

O. Kimmelma, I. Tittonen, and S. Buchter, “Passively Q-switched Nd:YAG pumped UV lasers at 280 and 374 nm,” Opt. Commun. 282, 2930–2933 (2009).

Article  ADS  Google Scholar 

N. S. Prasad, D. J. Armstrong, W. C. Edwards, and U. N. Singh, “Single-mode, all-solid-state Nd:YAG laser pumped UV converter,” in Proc. of the 24th International Laser Radar Conference, June 23–27, 2008, Boulder, USA. https://ntrs.nasa.gov/citations/20080023790. Cited 30.06.2023.

V. F. Elaev, G. D. Lyakh, and V. P. Pelenkov, “CuBr laser with average lasing power exceeding 100 W,” Atmos. Ocean. Opt. 2 (11), 1045–1047 (1989).

Google Scholar 

I. K. Kostadinov, K. A. Temelkov, D. N. Astadjov, S. I. Slaveeva, G. P. Yankov, and N. V. Sabotinov, “High-power copper bromide vapor laser,” Opt. Commun. 501, 127363 (2021).

Article  Google Scholar 

D. Brown and M. Withford, “High-average-power (15-W) 255 nm source based on second harmonic generation of a copper laser master oscillator power amplifier system in cesium lithium borate,” Opt. Lett. 26 (3), 1885–1887 (2001).

Article  ADS  Google Scholar 

D. W. Coutts, “Optimization of line-focusing geometry for efficient nonlinear frequency conversion from copper vapor laser,” IEEE J. Quantum. Electron. 31 (12), 2208–2214 (1995).

Article  ADS  Google Scholar 

G. S. Evtushenko and V. O. Troitskii, “X effective conversion of copper vapor laser emission in a β–BaB2O4 crystal,” J. Russ. Laser Res. 15 (1), 28–33 (1994).

Article  Google Scholar 

V. G. Dmitriev and L. V. Tarasov, Applied Nonlinear Optics, 2nd ed. (Fizmatlit, Moscow, 2004) [in Russian].

Google Scholar 

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39 (8), 3597–3639 (1968).

Article  ADS  Google Scholar 

V. V. Kolosov and V. O. Troitskii, “Optimal beam focusing at the second harmonic generation in an uniaxial crystal. Approximation of a preset field,” Atmos. Ocean. Opt. 20 (2), 94–100 (2007).

Google Scholar 

V. O. Troitskii, “Some problems of optimum focusing in the process of second harmonic generation in nonlinear crystals. Part 2. Results of numerical calculations,” Atmos. Ocean. Opt. 29 (2), 199–207 (2016).

Article  Google Scholar 

V. O. Troitskii, “Generation peculiarities of the second harmonics laser radiation at synchronism angles close to 90?,” Atmos. Ocean. Opt. 24 (1), 102–108 (2011).

Article  Google Scholar 

V. O. Troitskii, “Optimization of wave detuning during effective second harmonic generation,” Atmos. Ocean. Opt. 33 (3), 238–244 (2020).

Article  Google Scholar 

D. N. Nikogosyan, ”Nonlinear optics crystals (review and summary of data),” Sov. J. Quantum Electron. 7 (1), 1–12 (1977).

Article  ADS  Google Scholar 

V. O. Troitskii, “Second harmonic generation optimization under limited power density of fundamental radiation: Part 2,” Atmos. Ocean. Opt. 35 (5), 594–600 (2022).

Article  Google Scholar 

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Theory of generation of optical harmonics in converging beams,” ZhETF 23 (2), 474–486 (1966).

Google Scholar 

Yu. N. Karamzin, ”Difference schemes for calculating the three-frequency interactions of electromagnetic waves in a non-linear medium with quadratic polarization,” USSR Comput. Math. Math. Phys. 14 (4), 236–241 (1974).

Article  Google Scholar 

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. A 10 (2), 129–160 (1976).

ADS  Google Scholar 

P. A. Konyaev and V. P. Lukin, “Thermal distortions of focused laser beams in the atmosphere,” Sov. Phys. J. 26 (2), 173–182 (1983).

Article  Google Scholar 

R. E. Blahut, Fast Algorithms for Digital Signal Processing (Addison-Wesley, 1985).

Google Scholar 

V. V. Kolosov and V. O. Troitskii, “Approximate technique for solution of the problem of second harmonic generation in nonlinear crystals: Part 1,” Atmos. Oceanic Opt. 33 (3), 302–311 (2020).

Article  Google Scholar 

V. V. Kolosov and V. O. Troitskii, “Paraxial approximation for the problem of light beam propagation through a planar-cross stratified medium,” Atmos. Ocean. Opt. 18 (9), 674–679 (2005).

Google Scholar 

M. Born and E. Wolf, Principles of Optics; Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 4th ed. (Pergamon Press, 1968).

Google Scholar 

V. V. Kolosov and V. O. Troitskii, “Approximate technique for solving the problem of second harmonic generation in nonlinear crystals: Part 2,” Atmos. Ocean. Opt. 33 (3), 312–319 (2020).

Article  Google Scholar 

K. Kato, “Second harmonic generation to 2048 A in β‒BaB2O4,” IEEE J. Quantum Electron. QE–22 (7), 1013–1014 (1986).

Article  ADS  Google Scholar 

Comments (0)

No login
gif