Bleomycin-induced modulations of PARP 1 activity, NAD+ and PARG content in rat lung nuclei

Keywords: single challenge bleomycin rat model; poly(ADP-ribose) polymer metabolism; tannic acid; DNA melting profiles; activity regulation pathways.

Abstract Bleomycin-induced lung pathology in rodents is a well recognized animal model widely used for evaluation of new therapeutic approaches in treatment of lung inflammation and fibrotic diseases. It is documented that poly(ADP-ribose)polymerase 1 activity has a significant role in development of inflammatory processes in the heart, liver and brain. Herein, we used biochemical and immunochemical methods for estimation of poly(ADP-ribose)polymerase 1 (PARP 1) activity, NAD+ and poly(ADP-ribose)glycohydrolase (PARG) protein content in rat lung nuclei during the inflammatory phase in a bleomycin-induced one-hit rat model. To evaluate the influence of bleomycin – induced alterations in DNA structure on regulation of poly(ADP-ribose)polymerase 1 activation pathways, we isolated DNA from nuclei of lung tissues in the phase of acute lung inflammation induced by bleomycin, and DNA melting profiles were investigated. In the present study we investigated whether naturally occurring water-soluble polyphenol tannic acid with widely accepted anti-fibrotic and anti-inflammatory effects can influence poly(ADP-ribose)polymerase 1 activity, NAD+ and poly(ADP-ribose)glycohydrolase protein content in nuclear fraction isolated from rat lung tissues in a bleomycin-induced acute lung injury model. It was demonstrated that NAD+ level and poly(ADP-ribose)glycohydrolase protein content decreased in rat lung nuclei during the inflammatory phase in the bleomycin-induced acute lung injury model. Treatment of rats with tannic acid enhanced the effects displayed by bleomycin in lung nuclei, thus indicating synergistic interaction with the drug in the field covering PARP 1 activity, poly(ADP-ribose)glycohydrolase (PARG) protein and NAD+ content in lung nuclei. We observed PARP 1 inhibition in nuclei of lung tissue during the inflammatory phase in the bleomycin-induced acute lung injury rat model, which could be coupled with the drop of NAD+ level in nuclei. In the present study we highlighted that bleomycin (BLM) can induce DNA destabilization in lung nuclei. It was proposed that bleomycin-induced modulations in DNA structure could hamper PARP 1 binding with DNA and down-regulate the enzyme activating pathway in lung nuclei. The role of poly(ADP-ribose)glycohydrolase depletion in lung nuclei and sequential accumulation of poly(ADP-ribose)polymers in lung cells, which triggers their destruction and tissues damage, was proposed. It is suggested that in the light of synergistic interaction between bleomycin and tannic acid (TA) the anti-inflammatory role of tannic acid should be repurposed.

References

Andrabi, S. A., Kim, N. S., Yu, S. W., Wang, H., Koh, D. W., Sasaki, M., Klaus, J. A., Otsuka, T., Zhang, Z., Koehler, R. C., Hurn, P. D., Poirier, G. G., Dawson, V. L., & Dawson, T. M. (2006). Poly(ADP-ribose) (PAR) polymer is a death signal. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18309–18313.
Berger, N. A., Besson, V. C., Boulares, A. H., Bürkle, A., Chiarugi, A., Clark, R. S., Curtin, N. J., Cuzzocrea, S., Dawson, T. M., Haskó, G., Liaudet, L., Moroni, F., Pacher, P., Radermacher, P., Salzman, A. L., Snyder, S. H., Soriano, F. G. Strosznajder, R. P., Sümegi, B., Swanson, R. A., & Szabo, C. (2017). Oppor-tunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. British Journal of Pharmacology. 175(2), 192–222.
Bolzán, A. D., & Bianchi, M. S. (2018). DNA and chromosome damage induced by bleomycin in mammalian cells: An update. Mutation research. Reviews in Mutation Research, 775, 51–62.
Chinia, C. S., Tarragóa, M. G., & Chinia, E. N. (2017). NAD and the aging process: Role in life, death and everything in between. Molecular and Cellular Endocri-nology, 455, 62–74.
Chu, X., Wang, H., Jiang, Y.-M., Zhang, Y.-Y., Bao, Y.-F., Zhang, X., Zhang, J.-P., Guo, J. H., Yang, F., Luan, Y. C., & Dong, Y.-S. (2016). Ameliorative effects of tannic acid on carbon tetrachloride-induced liver fibrosis in vivo and in vitro. Journal of Pharmacological Sciences, 130(1), 15–23.
D’Amours, D., Desnoyers, S., D’Silva, I., & Poirier, G. G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochemical Jour-nal, 342, 249–268.
Demény, M. A., & Virág, L. (2021). The PARP enzyme family and the hallmarks of cancer. Part 1. Cell Intrinsic Hallmarks. Cancers, 13, 2042.
Edwards, A. D., Marecki, J. C., Byrd, A. K., Gao, J., Kevin, D., & Raney, K. D. (2021). G-quadruplex loops regulate PARP-1 enzymatic activation. Nucleic Acids Research, 49(1), 416–431.
Goodwin, K. D., Lewis, M. A., Long, E. C., & Georgiadis, M. M. (2008). Crystal structure of DNA-bound Co(III) bleomycin B2: Insights on intercalation and minor groove binding. Proceedings of the National Academy of Sciences the United States of America, 105(13), 5052–5056.
Gupte, R., Liu, Z., & Kraus, W. L. (2017). PARPs and ADP-ribosylation: Recent advances linking molecular functions to biological outcomes. Genes and De-velopment, 31(2), 101–126.
Harrision, D., Gravells, P., Thompson, R., & Bryant, H. E. (2020). Poly(ADP-ribose)glycohydrolase (PARG) vs. poly(ADP-ribose)polymerase (PARP) – function in genome maintenance and relevance of inhibitors for anti-cancer therapy. Frontiers in Molecular Biosciences, 7, 191.
Hewish, D. R., & Burgoyne, L. A. (1973). Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochemical and Biophysical Research Communications, 52(2), 504–510.
Hopkins, T. A., Ainsworth, W. B., Ellis, P. A., Donawho, C. K., DiGiammarino, E. L., Panchal, S. C., Abraham, V. C., Algire, M. A.,Yan, S., Olson, A. M., Johnson, E. F., Wilsbacher, J. L., & Maag, D. (2019). PARP1 trapping by PARP inhibitors drives cytotoxicity in both cancer cells and healthy bone mar-row. Molecular Cancer Research, 17(2), 408–419.
Kim, M. Y., Mauro, S., Gevry, N., Lis, J. T., & Kraus, W. L. (2004). NAD-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell, 19(6), 803–814.
Kirsanov, K., Kotova, E., Makhov, P., Golovine, K., Lesovaya, E. A., Kolenko, V. M., Yakubovsksya, M. G., & Tulin, A. (2014). Minor grove binding ligands disrupt PARP-1 activation pathways. Oncotarget, 5(2), 428–437.
Langelier, M. F., Zandarashvili, L., Aguiar, P. M., Black, B. E., & Pascal, J. M. (2018). NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains. Nature Communications, 9, 844.
Lonskaya, I., Potaman, V. N., Shlyakhtenko, L. S., Oussatcheva, E. A., Lyubchenko, Y. L., & Soldatenkov, V. A. (2005). Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding. The Journal of Biological Chemistry, 280(17), 17076–17083.
Lowry, O. H., Rasebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin-phenol reagents. Journal of Biological Chemitry, 193(1), 265–275.
Lucarini, L., Durante, M., Lanzi, C., Pini, A., Boccalini, G., Calosi, L., Moroni, F., Masini, E., & Mannaioni, G. (2017). Hydamtiq, a selective PARP-1 inhibitor, improves bleomycin-induced lung fibrosis by dampening the TGF-b/SMAD signaling pathway. Journal of Cellular Molecular Medicine, 21(2), 324–335.
Murray, V., Chen, J. K., & Chung, L. H. (2018). The interaction of the metallo-glycopeptide anti-tumour drug bleomycin with DNA. International Journal of Molecular Sciences, 19, 1372.
Muthurajan, U. M., Maggie, H., Hieb, A. R., Clark, N. J., Kramer, M., Yao, T., & Luger, K. (2014). Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone. Proceedings of the National Academy of Sciences of the United States of America, 111(35), 12752–12757.
Pazzaglia, S., & Pioli, C. (2020). Multifaceted role of PARP -1 in DNA repair and inflammation: Pathological and therapeutic implications in cancer and non-cancer diseases. Cells, 9(1), 41.
Pommier, Y., O'Connor, M. J., & de Bono, J. (2016). Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Science Translational Medicine, 8(368), 368er7.
Putt, K. S., & Hergenrother, P. J. (2004). An enzymatic assay for poly(ADP – ribose) polymerase – 1 (PARP-1) via the chemical quantitation of NAD+: Application to the high-throughput screening of small molecules as potential inhibitors. Analytical Biochemistry, 326, 78–86.
Reed, E. B., Ard, S., La, J., Park, C. Y., Culligan, L., Fredberg, J. J., Smolyaninova, L. V., Orlov, S. N., Chen, B., Guzy, R., Mutlu, G. M., & Dulin, N. O. (2019). Anti-fibrotic effects of tannic acid through regulation of a sustained TGF-beta receptor signaling. Respiratory Research, 20, 168.
Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual. 3rd edition. Vol. 1. Cold Spring Harbor Laboratory Press, New York.
Sun, Y., Zhang, T., Wang, B., Li, H., & Li, P. (2012). Tannic acid, an inhibitor of poly(ADP-Ribose) glycohydrolase, sensitizes ovarian carcinoma cells to cisplatin. Anticancer Drugs, 23(9), 979–990.
Szabo, C., Martins, V., & Liaudet, L. (2020). Poly(ADP-ribose) polymerase inhibi-tion in acute lung injury. A reemerging concept. American Journal of Respirato-ry Cell and Molecular Biology, 63(5), 571–590.
Thomas, C., Jib, Y., Wub, C., Datz, H., Boyle, C., MacLeod, B., Patel, S., Ampofo, M., Currie, M., Harbin, J., Pechenkina, K., Lodhi, N., Johnson, S. J., & Tulin, A. V. (2019). Hit and run versus long-term activation. Proceedings of the National Academy of Sciences of the United States of America, 116(20), 9941–9946.
Tulin, A., & Spradling, A. (2003). Chromatin loosening by poly(ADP)-ribose polymerase(PARP) at Drosophila puff loci. Science, 299(5606), 560–562.
Wang, Y., Dawson, V. L., & Dawson, M. T. (2009). Poly(ADP-ribose) signals to mitochondrial AIF: A key event in parthanatos. Experimental Neurology, 218(2), 193–202.
Yang, Y., & Sauve, A. A. (2016). NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy. Biochimica and Biophysica Acta, 1864(12), 1787–1800.
Jing, W., Xiaolan, C., Yu, C., Feng, Q., & Haifeng, Y. (2022). Pharmacological effects and mechanisms of tannic acid. Biomedicine and Pharmacotherapy, 154, 113561.
Youness, R. A., Kamel, R., Elkasabgy, N. A., Shao, P., & Farag, M. A. (2021). Recent advances in tannic acid (gallotannin) anticancer activities and drug deli-very systems for efficacy improvement. A comprehensive review. Molecules, 26(5), 1486.
Zong, W. X., & Thompson, C. B. (2006). Necrotic death as a cell fate. Genes and Development, 20, 1–15.

Comments (0)

No login
gif