Photosynthetic potential of Malus domestica columnar group

Keywords: leaf photosynthesis; chlorophyll fluorescence; cultivar; induction coefficient; chlorophyll; adaptability

Abstract Productivity is one of the primary economic and biological characteristics of an apple tree variety; it is this characteristic that determines the value and economic feasibility of the variety. The photosynthetic activity of the leaf surface of plants plays a leading role in forming the potential productivity of the apple tree. By "potential productivity," we mean the productivity of plants under conditions of ideal agroenvironment, optimal nutrition, and absence of diseases. To diagnose the potential productivity of cultivars we used an indicator of chlorophyll fluorescence induction–induction coefficient (Кі). According to our data, the Кі of leaves of columnar cultivars ranged from 0.720 to 0.740, indicating a high level of efficiency of photophysical processes near the photosystem II (PS II) reaction centers. For plants of columnar cultivars, the viability index ranged from 1.78 to 2.19. It has been established that individual age sections of tree trunks form different productivity potentials. Thus, based on the chlorophyll a (Chl a) fluorescence induction index, a higher intensity of photosynthesis was observed in the leaves of the cultivars ‘Valuta’, ‘Favoryt’, and ‘Bilosnizhka’ on seven to nine-year-old trunks. In contrast, for ‘Tantsivnytsia’, the highest intensity was observed on the oldest spur formation (14–19 years old). In traditional apple cultivars, the intensity of photosynthesis, as indicated by Кі, decreased with the age of spur formation; however, such a decline was not observed in columnar cultivars. The leaves of plants from the traditional cultivar ‘Idared’, situated on a homogeneous shoot, exhibited the highest photosynthetic intensity based on the F680γt / F680βt light intensity. Conversely, in the leaves of three-year-old spur formations, a 25.3% decrease in photosynthetic intensity was observed, falling to a 45.7% decrease in six-year-olds. With the optimal combination of agroecological factors for columnar cultivars, stability in the photosynthetic potential across various complex spur formations is observed. In typical apple cultivars, the age of spur formation leads to a suppression of photosynthetic intensity. The cultivar ‘Bilosnizhka’ is characterized by the highest Chl a/ Chl b content, indicating lower adaptability. In the leaves of this cultivar, the amount of Chl a exceeded Chl b by three times; in contrast, in the cultivars ‘Sparta’ and ‘Tantsivnytsia’, the difference was 2.5 times higher. This value (2.5x) correlates with increased adaptability to the conditions in which they were studied. The highest level of leaf net productivity of photosynthesis (NPP) is observed in plants of the ‘Valuta’ cultivar (13.9 g/m² for day); in the cultivars ‘Bilosnizhka’, ‘Favoryt’, ‘Bolero’, ‘Sparta’, ‘Tantsivnytsia’, and ‘Papirovka’, the accumulation of dry matter is lowered by 32.6–40.6%.

References

Allen, J. F. (1992). Protein phosphorylation in regulation of photosynthesis. Biochi-mica et Biophysica Acta - Bioenergetics, 1098(3), 275–335.
Blažek, J. (1990). Segregation and general evaluation of spur type or compact growth habits in apples. Fruit Breeding and Genetics, 317, 71–80.
Blažek, J., & Křelinová, J. (2011). Tree growth and some other characteristics of new columnar apple cultivars bred in Holovousy, Czech Republic. Horticultural Science, 38(1), 11–20.
Dau, H. (1994). Molecular mechanisms and quantitative models of variable photo-system II fluorescence. Photochemistry and Photobiology, 60(1), 1–23.
Havryliuk, O. S., & Kondratenko, T. Y. (2020). Strukturno-funktsionalnyi stan lystkiv kolonopodibnykh sortiv yabluni v umovakh Kyivshchyny [The intensity of photosynthesis of leaves of columnar apple-tree in the conditions of Kyiv]. Scientific reports of NULES of Ukraine, 2, 84 (in Ukrainian).
Havryliuk, O. S., Kondratenko, Y., & Kytaiev, O. I. (2019). Diahnostyka funktsional’noho stanu roslyn kolonopodibnykh sortiv yabluni [Diagnosis of the functional state of plants of columnar apple varieties]. Plant and Soil Science, 10(2), 70–80 (in Ukrainian).
Havryliuk, O., & Kondratenko, T. (2019). Specific of the assimilation surface of columnar apple-tree. Agrobiodiversity for Improving Nutrition, Health and Life Quality, (3), 57–65.
Havryliuk, О., Kondratenko, Т., Mazur, B., Kutovenko, V., Mazurenko, B., Voit-sekhivska, O., & Dmytrenko, Y. (2022a). Morphophysiological peculiarities of productivity formation in columnar apple cultivars. Agronomy Research, 20(1), 148–160.
Havryliuk, О., Kondratenko, Т., Mazur, B., Tonkha, О., Andrusyk, Y., Kutovenko, V., Yakovlev, R., Kryvoshapka, V., Trokhymchuk, A., & Dmytrenko, Y. (2022b). Efficiency of productivity potential realization of different-age sites of a trunk of grades of columnar type apple-trees. Agronomy Research, 20(2), 241–260.
Hsu, B. D. (1992). A theoretical study on the fluorescence induction curve of spinach thylakoids in the absence of DCMU. Biochimica et Biophysica Acta - Bioenergetics, 1140(1), 30–36.
Ivanova, I., Serdyuk, M., Malkina, V., Tonkha, O., Tsyz, O., Mazur, B., Shkinder-Barmina, A., Gerasko, T., & Havryliuk, O. (2022). Cultivar features of poly-phenolic compounds and ascorbic acid accumulation in the cherry fruits (Pru-nus cerasus L.) in the Southern Steppe of Ukraine. Agronomy Research, 20(3), 588–602.
Jacob, H. B. (2010). Breeding experiments of apple varieties with columnar growth and low chilling requirements. Acta Horticulturae, 872, 159–164.
Kasampalis, D. S., Tsouvaltzis, P., Ntouros, K., Gertsis, A., Gitas, I., & Siomos, A. S. (2021). The use of digital imaging, chlorophyll fluorescence and Vis/NIR spectroscopy in assessing the ripening stage and freshness status of bell pepper fruit. Computers and Electronics in Agriculture, 187, 106265.
Korneev, D., & Kochubej, S. (2000). Izucheniye Q-vosstanavlivayushchikh kom-pleksov fotosistemy 2 s pomoshchyu induktsii fluorestsentsii khlorofila [Study of QB-reducing complexes of photosystem 2 using the induction of chlorophyll fluorescence]. Fiziologiya i Biokhimiya Kul’turnikh Rastenii, 32(1), 20–24 (in Russian).
Koshelev, V. K., & Ursulenko, P. K. (1977). Opredelenie produktivnosti fotosinteza listev yabloni putem koltsevaniya chereshka [Determination of the productivity of photosynthesis of apple leaves by banding the petiole]. Sbornik Nauchnikh Rabot, Michurinsk, 25, 66–70 (in Russian).
Krause, G. H., & Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Biology, 42(1), 313–349.
Kryvoshapka, V., & Kytaev, O. (2019). Fluorestsentnie-spektralnie issledovaniya funktsionalnogo sostoyaniya rastenii v svyazi s ikh ustoichivostyu k zasukhe i visokoi temperature [Fluorescence-spectral investigations of functional state of plants in relation to their resistance to drought and high temperature]. Stiinta Agricola, 2, 31–34 (in Russian).
Kytaiev, О., & Pelekhatyi, V. M. (1981). Liuministsentni spektralni doslidzhennia pidhotovky roslyn yabluni do zymy [Luminescent spectral studies of prepara-tion of apple plants for winter]. Sadivnytstvo, 29, 60–68 (in Ukrainian).
Lazár, D. (1999). Chlorophyll a fluorescence induction. Biochimica et Biophysica Acta - Bioenergetics, 1412(1), 1–28.
Litvinova, O., Dehodiuk, S., Litvinov, D., Havryliuk, O., Kyrychenko, A., Borys, N., & Dmytrenko, O. (2023a). Efficiency of technology elements for growing winter wheat on typical chernozem. Agronomy Research, 21(3), 1199–1212.
Litvinova, O., Tonkha, O., Havryliuk, O., Litvinov, D., Symochko, L., Dehodiuk, S., & Zhyla, R. (2023b). Fertilizers and pesticides impact on surface-active substances accumulation in the dark gray podzolic soils. Journal of Ecological Engineering, 24(7), 119–127.
Makarova, D., & Kytaiev, О. (2008). Potentsiina produktyvnist’ ta sumisnist’ sortiv yabluni na klonovykh pidshchepakh selektsii UAAN [Potential productivity and compatibility of apple cultivars on clonal rootstocks of UAAS selection]. Journal of Lviv National Agrarian University, Agronomy, 12(2), 97–101 (in Ukrainian).
Mamonova, R. Y., Kytaiev, O. I., Shykhalieieva, H. M., Slyusar, S. I., & Kolesnyk, Y. S. (2018). Funktsionalna diahnostyka adaptyvnosti introdukovanykh vydiv rodu snizhnoiahidnyk (Symphoricarpos Duhamel) v umovakh Kyieva [Functional diagnostics of adaptability of introduced species of the genus snowberry (Symphoricarpos Duhamel) in Kiev city conditions]. Scientific Reports of NULES of Ukraine, 1, 71 (in Ukrainian).
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51(345), 659–668.
Melis, A. (1991). Dynamics of photosynthetic membrane composition and function. Biochimica et Biophysica Acta - Bioenergetics, 1058(2), 87–106.
Mezhenskyj, V. M. (2008). Groups of ornamental cultivars and forms of species of the genus Malus Mill. Scientific Bulletin of the Bila Tserkva National Agrarian University, 54, 98–101 (in Ukrainian).
Okada, K., Wada, M., Takebayashi, Y., Kojima, M., Sakakibara, H., Nakayasu, M., Mizutani, M., Nakajima, M., Moriya, S., Shimizu, T., & Abe, K. (2020). Co-lumnar growth phenotype in apple results from gibberellin deficiency by ectopic expression of a dioxygenase gene. Tree Physiology, 40(9), 1205–1216.
Pavlichenko, A., Dmytrenko, O., Litvinova, O., Kovalova, S., Litvinov, D., & Havryliuk, O. (2023). Changes in gray forest soil organic matter pools under anthropogenic load in agrocenoses. Agronomy Research, 21(3), 1266–1277.
Pochinok, H. N. (1976). Metody biokhimicheskogo analiza rasteniy [Methods of biochemical analysis of plants]. Naukova Dumka, Kyiv (in Ukrainian).
Ptushenkom, V. V., Karavaev, V. A., Solntsev, M. K., & Tikhonov, A. N. (2013). Biophysical methods of ecological monitoring. photosynthetic characteristics of tree plants growing in Moscow city. Biophysics, 58, 228–233.
Roháček, K., & Barták, M. (1999). Technique of the modulated chlorophyll fluorescence: Basic concepts, useful parameters, and some applications. Photosynthetica, 36(13), 339.
Schreiber, U., Bilger, W., & Neubauer, C. (1995). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze, E. D., & Caldwell, M. M. (Eds.). Ecophysiology of photosynthesis. Springer Study Edition. Vol. 100. Springer, Berlin, Heidelberg.
Shikhov, V. N., Velichko, V. V., Nesterenko, T. V., & Tikhomirov, A. A. (2011). Ontogenetic approach to assessment of chufa response to culture conditions by the method of chlorophyll fluorescence induction. Russ Journal of Plant Physiology, 58, 359–363.
Sovakova, М., Sovakov, О., & Kytaiev, О. (2014). Ecological tolerance of linden species (Tilia L.) by photo- and thermo-induced changes in chlorophyll fluorescence of leaves. Ukrainian Journal of Forest and Wood Science, 1982, 285–293.
Sun, X., Wen, C., Hou, H., Huo, H., Zhu, J., Dai, H., & Zhang, Y. (2020). Genes involved in strigolactone biosyntheses and their expression analyses in colum-nar apple and standard apple. Biologia Plantarum, 64, 68–76.
Sun, X., Wen, C., Zhu, J., Dai, H., & Zhang, Y. (2021). Apple columnar gene MdDMR6 increases the salt stress tolerance in transgenic tobacco seedling and apple calli. Journal of Plant Growth Regulation, 40(1), 187–196.
Tanaka, A., Ito, H., Tanaka, R., Tanaka, N. K., Yoshida, K., & Okada, K. (1998). Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proceedings of the National Academy of Sciences, 95(21), 12719–12723.
Tobutt, K. R. (1984). Breeding columnar apples varieties at East Malling. Scientific Horticulture, 35, 72–77.
Tobutt, K. R. (1994). Combining apetalous parthenocarpy with columnar growth habit in apple. Euphytica, 77, 51–54.
Trokhymchuk, A. I., & Makarova, D. H. (2012). Physiological drought resistance of promising apple cultivars (Malus domestica Borkh.) in the right-bank subzone of the Western Forest-Steppe of Ukraine. Horticulture, (66), 230–234.
Vasylenko, O., Kondratenko, T., Havryliuk, O., Andrusyk, Y., Kutovenko, V., Dmytrenko, Y., Grevtseva, N., & Marchyshyna, Y. (2021). The study of the productivity potential of grape cultivars according to the indicators of functional activity of leaves. Potravinarstvo, 15, 639–647.
Voitovyk, M., Butenko, А., Prymak, I., Mishchenko, Y., Tkachenko, M., Tsiuk, O., Panchenko, O., Slieptsov, Y., Kopylova, T., & Havryliuk, O. (2023). Influence of fertilizing and tillage systems on humus content of typical chernozem. Agraarteadus 34(1), 44–50.
Wada, M., Iwanami, H., Moriya, S., Hanada, T., Moriya-Tanaka, Y., Honda, C., Taku, S., Kazuyuki, A., & Okada, K. (2018). A root-localized gene in normal apples is ectopically expressed in aerial parts of columnar apples. Plant Growth Regulation, 85(3), 389–398.

Comments (0)

No login
gif