A deep-learning-based scatter correction with water equivalent path length map for digital radiography

Kunitomo H, Ichikawa K. Signal-to-noise ratio improvements using anti-scatter grids with different object thicknesses and tube voltages. Physica Med. 2020;73:105–10. https://doi.org/10.1016/j.ejmp.2020.04.014.

Article  Google Scholar 

Barnes GT. Contrast and scatter in x-ray imaging. Radiographics. 1991;11(2):307–23. https://doi.org/10.1148/radiographics.11.2.2028065.

Article  CAS  PubMed  Google Scholar 

Ning R, Chen B, Yu R, Conover D, Tang X, Ning Y. Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation. IEEE Trans Med Imaging. 2000;19(9):949–63. https://doi.org/10.1109/42.887842.

Article  CAS  PubMed  Google Scholar 

Siewerdsen JH, Jaffray DA. Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter. Med Phys. 2001;28(2):220–31. https://doi.org/10.1118/1.1339879.

Article  CAS  PubMed  Google Scholar 

Chan H-P, Doi K. Investigation of the performance of antiscatter grids: Monte Carlo simulation studies. Phys Med Biol. 1982;27(6):785. https://doi.org/10.1088/0031-9155/27/6/002.

Article  CAS  PubMed  Google Scholar 

Kalender WA. Calculation of x-ray grid characteristics by Monte Carlo methods. Phys Med Biol. 1982;27(3):353. https://doi.org/10.1088/0031-9155/27/3/002.

Article  CAS  PubMed  Google Scholar 

Love LA, Kruger RA. Scatter estimation for a digital radiographic system using convolution filtering. Med Phys. 1987;14(2):178–85. https://doi.org/10.1118/1.596126.

Article  CAS  PubMed  Google Scholar 

Naimuddin S, Hasegawa B, Mistretta CA. Scatter-glare correction using a convolution algorithm with variable weighting. Med Phys. 1987;14(3):330–4. https://doi.org/10.1118/1.596088.

Article  CAS  PubMed  Google Scholar 

Seibert JA, Boone JM. X-ray scatter removal by deconvolution. Med Phys. 1988;15(4):567–75. https://doi.org/10.1118/1.596208.

Article  CAS  PubMed  Google Scholar 

Wagner FC, Macovski A, Nishimura DG. A characterization of the scatter point-spread-function in terms of air gaps. IEEE Trans Med Imaging. 1988;7(4):337–44. https://doi.org/10.1109/42.14517.

Article  CAS  PubMed  Google Scholar 

Siewerdsen JH, Moseley DJ, Bakhtiar B, Richard S, Jaffray DA. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors: antiscatter grids in cone-beam CT. Med Phys. 2004;31(12):3506–20. https://doi.org/10.1118/1.1819789.

Article  CAS  PubMed  Google Scholar 

Nykänen K, Siltanen S. X-ray scattering in full-field digital mammography. Med Phys. 2003;30(7):1864–73. https://doi.org/10.1118/1.1584160.

Article  PubMed  Google Scholar 

Ducote JL, Molloi S. Scatter correction in digital mammography based on image deconvolution. Phys Med Biol. 2010;55(5):1295. https://doi.org/10.1088/0031-9155/55/5/003.

Article  CAS  PubMed  Google Scholar 

Ersahin A, Molloi S, Qian Y-J. A digital filtration technique for scatter-glare correction based on thickness estimation. IEEE Trans Med Imaging. 1995;14(3):587–95. https://doi.org/10.1109/42.414624.

Article  CAS  PubMed  Google Scholar 

Díaz O, Dance DR, Young KC, Elangovan P, Bakic PR, Wells K. A fast scatter field estimator for digital breast tomosynthesis. Phys Med Imaging SPIE. 2012;8313:63–71. https://doi.org/10.1117/12.911494.

Article  CAS  Google Scholar 

Maier J, Sawall S, Knaup M, Kachelrieß M. Deep scatter estimation (DSE): accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network. J Nondestr Eval. 2018;37:1–9. https://doi.org/10.1007/s10921-018-0507-z.

Article  Google Scholar 

Jiang Y, Yang C, Yang P, Hu X, Luo C, Xue Y, Xu L, Hu X, Zhang L, Wang J. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN). Phys Med Biol. 2019;64(14): 145003. https://doi.org/10.1088/1361-6560/ab23a6.

Article  PubMed  Google Scholar 

Lee H, Lee J. A deep learning-based scatter correction of simulated x-ray images. Electronics. 2019;8(9):944. https://doi.org/10.3390/electronics8090944.

Article  Google Scholar 

Nomura Y, Xu Q, Shirato H, Shimizu S, Xing L. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Med Phys. 2019;46(7):3142–55. https://doi.org/10.1002/mp.13583.

Article  PubMed  PubMed Central  Google Scholar 

Pautasso JJ, Caballo M, Mikerov M, Boone JM, Michielsen K, Sechopoulos I. Deep learning for x-ray scatter correction in dedicated breast CT. Med Phys. 2022;50:2022–36. https://doi.org/10.1002/mp.16185.

Article  Google Scholar 

Wang J, Duan X, Christner JA, Leng S, Yu L, McCollough CH. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part I. Development and validation of methods using the CT image. Med Phys. 2012;39(11):6764–71. https://doi.org/10.1118/1.4757586.

Article  PubMed  Google Scholar 

AAPM, Size-specific dose estimates (ssde) in pediatric and adult bodyct examinations, aapm task group 204, (2011) 204. https://www.aapm.org/pubs/reports/rpt_204.pdf.Accessed on 27 Sep 2023

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90.

Siddon RL. Fast calculation of the exact radiological path for a three-dimensional CT array. Med Phys. 1985;12(2):252–5. https://doi.org/10.1118/1.595715.

Article  CAS  PubMed  Google Scholar 

Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention (Berlin: Springer) (2015) 234–241. https://doi.org/10.1007/978-3-319-24574-4_28.

Osman AFI, Tamam NM. Deep learning-based convolutional neural network for intramodality brain MRI synthesis. J Appl Clin Med Phys. 2022;23(4): e13530. https://doi.org/10.1002/acm2.13530.

Article  PubMed  PubMed Central  Google Scholar 

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045–57. https://doi.org/10.1007/s10278-013-9622-7.

Article  PubMed  PubMed Central  Google Scholar 

Zhu Y-M, Cochoff SM, Sukalac R. Automatic patient table removal in CT images. J Digit Imaging. 2012;25(4):480–5. https://doi.org/10.1007/s10278-012-9454-x.

Article  PubMed  PubMed Central  Google Scholar 

Schneider W, Bortfeld T, Schlegel W. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol. 2000;45(2):459. https://doi.org/10.1088/0031-9155/45/2/314.

Article  CAS  PubMed  Google Scholar 

Tucker DM, Barnes GT, Chakraborty DP. Semiempirical model for generating tungsten target x-ray spectra. Med Phys. 1991;18(2):211–8. https://doi.org/10.1118/1.596709.

Article  CAS  PubMed  Google Scholar 

Bert J, Lemaréchal Y, Benoit D, Garcia M-P, Visvikis D. GGEMS: GPU GEant4-based Monte Carlo simulation platform. Contributionsa la simulation Monte-Carlo pour l’optimisation du traitement en radiothérapie. 2016;69:4987–5006.

Google Scholar 

Allison J, Amako K, Apostolakis JEA, Araujo H, Dubois PA, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R. Geant4 developments and applications. IEEE Trans Nucl Sci. 2006;53(1):270–8. https://doi.org/10.1109/TNS.2006.869826.

Article  Google Scholar 

Stepanek J. Electron and positron atomic elastic scattering cross sections. Radiat Phys Chem. 2003;66(2):99–116. https://doi.org/10.1016/S0969-806X(02)00386-9.

Article 

Comments (0)

No login
gif