Kunitomo H, Ichikawa K. Signal-to-noise ratio improvements using anti-scatter grids with different object thicknesses and tube voltages. Physica Med. 2020;73:105–10. https://doi.org/10.1016/j.ejmp.2020.04.014.
Barnes GT. Contrast and scatter in x-ray imaging. Radiographics. 1991;11(2):307–23. https://doi.org/10.1148/radiographics.11.2.2028065.
Article CAS PubMed Google Scholar
Ning R, Chen B, Yu R, Conover D, Tang X, Ning Y. Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation. IEEE Trans Med Imaging. 2000;19(9):949–63. https://doi.org/10.1109/42.887842.
Article CAS PubMed Google Scholar
Siewerdsen JH, Jaffray DA. Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter. Med Phys. 2001;28(2):220–31. https://doi.org/10.1118/1.1339879.
Article CAS PubMed Google Scholar
Chan H-P, Doi K. Investigation of the performance of antiscatter grids: Monte Carlo simulation studies. Phys Med Biol. 1982;27(6):785. https://doi.org/10.1088/0031-9155/27/6/002.
Article CAS PubMed Google Scholar
Kalender WA. Calculation of x-ray grid characteristics by Monte Carlo methods. Phys Med Biol. 1982;27(3):353. https://doi.org/10.1088/0031-9155/27/3/002.
Article CAS PubMed Google Scholar
Love LA, Kruger RA. Scatter estimation for a digital radiographic system using convolution filtering. Med Phys. 1987;14(2):178–85. https://doi.org/10.1118/1.596126.
Article CAS PubMed Google Scholar
Naimuddin S, Hasegawa B, Mistretta CA. Scatter-glare correction using a convolution algorithm with variable weighting. Med Phys. 1987;14(3):330–4. https://doi.org/10.1118/1.596088.
Article CAS PubMed Google Scholar
Seibert JA, Boone JM. X-ray scatter removal by deconvolution. Med Phys. 1988;15(4):567–75. https://doi.org/10.1118/1.596208.
Article CAS PubMed Google Scholar
Wagner FC, Macovski A, Nishimura DG. A characterization of the scatter point-spread-function in terms of air gaps. IEEE Trans Med Imaging. 1988;7(4):337–44. https://doi.org/10.1109/42.14517.
Article CAS PubMed Google Scholar
Siewerdsen JH, Moseley DJ, Bakhtiar B, Richard S, Jaffray DA. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors: antiscatter grids in cone-beam CT. Med Phys. 2004;31(12):3506–20. https://doi.org/10.1118/1.1819789.
Article CAS PubMed Google Scholar
Nykänen K, Siltanen S. X-ray scattering in full-field digital mammography. Med Phys. 2003;30(7):1864–73. https://doi.org/10.1118/1.1584160.
Ducote JL, Molloi S. Scatter correction in digital mammography based on image deconvolution. Phys Med Biol. 2010;55(5):1295. https://doi.org/10.1088/0031-9155/55/5/003.
Article CAS PubMed Google Scholar
Ersahin A, Molloi S, Qian Y-J. A digital filtration technique for scatter-glare correction based on thickness estimation. IEEE Trans Med Imaging. 1995;14(3):587–95. https://doi.org/10.1109/42.414624.
Article CAS PubMed Google Scholar
Díaz O, Dance DR, Young KC, Elangovan P, Bakic PR, Wells K. A fast scatter field estimator for digital breast tomosynthesis. Phys Med Imaging SPIE. 2012;8313:63–71. https://doi.org/10.1117/12.911494.
Maier J, Sawall S, Knaup M, Kachelrieß M. Deep scatter estimation (DSE): accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network. J Nondestr Eval. 2018;37:1–9. https://doi.org/10.1007/s10921-018-0507-z.
Jiang Y, Yang C, Yang P, Hu X, Luo C, Xue Y, Xu L, Hu X, Zhang L, Wang J. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN). Phys Med Biol. 2019;64(14): 145003. https://doi.org/10.1088/1361-6560/ab23a6.
Lee H, Lee J. A deep learning-based scatter correction of simulated x-ray images. Electronics. 2019;8(9):944. https://doi.org/10.3390/electronics8090944.
Nomura Y, Xu Q, Shirato H, Shimizu S, Xing L. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Med Phys. 2019;46(7):3142–55. https://doi.org/10.1002/mp.13583.
Article PubMed PubMed Central Google Scholar
Pautasso JJ, Caballo M, Mikerov M, Boone JM, Michielsen K, Sechopoulos I. Deep learning for x-ray scatter correction in dedicated breast CT. Med Phys. 2022;50:2022–36. https://doi.org/10.1002/mp.16185.
Wang J, Duan X, Christner JA, Leng S, Yu L, McCollough CH. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part I. Development and validation of methods using the CT image. Med Phys. 2012;39(11):6764–71. https://doi.org/10.1118/1.4757586.
AAPM, Size-specific dose estimates (ssde) in pediatric and adult bodyct examinations, aapm task group 204, (2011) 204. https://www.aapm.org/pubs/reports/rpt_204.pdf.Accessed on 27 Sep 2023
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90.
Siddon RL. Fast calculation of the exact radiological path for a three-dimensional CT array. Med Phys. 1985;12(2):252–5. https://doi.org/10.1118/1.595715.
Article CAS PubMed Google Scholar
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention (Berlin: Springer) (2015) 234–241. https://doi.org/10.1007/978-3-319-24574-4_28.
Osman AFI, Tamam NM. Deep learning-based convolutional neural network for intramodality brain MRI synthesis. J Appl Clin Med Phys. 2022;23(4): e13530. https://doi.org/10.1002/acm2.13530.
Article PubMed PubMed Central Google Scholar
Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045–57. https://doi.org/10.1007/s10278-013-9622-7.
Article PubMed PubMed Central Google Scholar
Zhu Y-M, Cochoff SM, Sukalac R. Automatic patient table removal in CT images. J Digit Imaging. 2012;25(4):480–5. https://doi.org/10.1007/s10278-012-9454-x.
Article PubMed PubMed Central Google Scholar
Schneider W, Bortfeld T, Schlegel W. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol. 2000;45(2):459. https://doi.org/10.1088/0031-9155/45/2/314.
Article CAS PubMed Google Scholar
Tucker DM, Barnes GT, Chakraborty DP. Semiempirical model for generating tungsten target x-ray spectra. Med Phys. 1991;18(2):211–8. https://doi.org/10.1118/1.596709.
Article CAS PubMed Google Scholar
Bert J, Lemaréchal Y, Benoit D, Garcia M-P, Visvikis D. GGEMS: GPU GEant4-based Monte Carlo simulation platform. Contributionsa la simulation Monte-Carlo pour l’optimisation du traitement en radiothérapie. 2016;69:4987–5006.
Allison J, Amako K, Apostolakis JEA, Araujo H, Dubois PA, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R. Geant4 developments and applications. IEEE Trans Nucl Sci. 2006;53(1):270–8. https://doi.org/10.1109/TNS.2006.869826.
Stepanek J. Electron and positron atomic elastic scattering cross sections. Radiat Phys Chem. 2003;66(2):99–116. https://doi.org/10.1016/S0969-806X(02)00386-9.
Comments (0)