The Apo gene's genetic variants: hidden role in Asian vascular risk

Biswas T, Townsend N, Das GR et al (2023) Clustering of metabolic and behavioural risk factors for cardiovascular diseases among the adult population in South and Southeast Asia: findings from WHO STEPS data. Lancet Reg Heal - Southeast Asia 12:100164. https://doi.org/10.1016/j.lansea.2023.100164

Article  Google Scholar 

Qiao J, Lu WH, Wang J et al (2014) Vascular risk factors aggravate the progression of Alzheimer’s disease: A 3-year follow-up study of Chinese population. Am J Alzheimers Dis Other Demen 29:521–525. https://doi.org/10.1177/1533317514522853

Article  PubMed  PubMed Central  Google Scholar 

Singh V, Prabhakaran S, Chaturvedi S et al (2017) An examination of stroke risk and burden in South Asians. J Stroke Cerebrovasc Dis 26:2145–2153. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.04.036

Article  PubMed  Google Scholar 

Kizza J, Lewington S, Mappin-Kasirer B et al (2019) Cardiovascular risk factors and Parkinson’s disease in 500,000 Chinese adults. Ann Clin Transl Neurol 6:624–632. https://doi.org/10.1002/acn3.732

Article  PubMed  PubMed Central  Google Scholar 

Yeh EJ, Grigolon RB, Rodrigues SR, A Bueno AP (2023) Systematic literature review and meta-analysis of cardiovascular risk factor management in selected Asian countries. J Comp Eff Res 12. https://doi.org/10.57264/cer-2022-0085

Yin Y-W, Sun Q-Q, Wang P-J et al (2014) Genetic polymorphism of apolipoprotein A5 gene and susceptibility to type 2 diabetes mellitus: a meta-analysis of 15,137 subjects. PLoS ONE 9:e89167. https://doi.org/10.1371/journal.pone.0089167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fatma R, Chauhan W, Riyaz S et al (2023) Genetic association analysis of rs662799 ( − 1131A > G) polymorphism of APOA5 gene with morphometric and physio-metric traits using multiplex PCR. Egypt J Med Hum Genet 24:19. https://doi.org/10.1186/s43042-023-00398-x

Article  Google Scholar 

Doo M, Won S, Kim Y (2015) Association between the APOB rs1469513 polymorphism and obesity is modified by dietary fat intake in Koreans. Nutrition 31:653–658. https://doi.org/10.1016/j.nut.2014.10.007

Article  CAS  PubMed  Google Scholar 

Kang R, Kim M, Chae JS et al (2014) Consumption of whole grains and legumes modulates the genetic effect of the APOA5 -1131C variant on changes in triglyceride and apolipoprotein A-V concentrations in patients with impaired fasting glucose or newly diagnosed type 2 diabetes. Trials 15:100. https://doi.org/10.1186/1745-6215-15-100

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Luis Roman D, Primo D, Izaola O, Aller R (2022) Association of the APOA-5 genetic variant rs662799 with metabolic changes after an intervention for 9 months with a low-calorie diet with a Mediterranean profile. Nutrients 14. https://doi.org/10.3390/nu14122427

Mehta A, Shapiro MD (2022) Apolipoproteins in vascular biology and atherosclerotic disease. Nat Rev Cardiol 19:168–179. https://doi.org/10.1038/S41569-021-00613-5

Article  CAS  PubMed  Google Scholar 

Nielsen LB, Christoffersen C, Ahnström J, Dahlbäck B (2009) ApoM: gene regulation and effects on HDL metabolism. Trends Endocrinol Metab 20:66–71. https://doi.org/10.1016/j.tem.2008.11.003

Article  CAS  PubMed  Google Scholar 

Sacks FM (2015) The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr Opin Lipidol 26:56–63. https://doi.org/10.1097/MOL.0000000000000146

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong S, Goldberg IJ, Bruce C et al (1994) Human ApoA-II inhibits the hydrolysis of HDL triglyceride and the decrease of HDL size induced by hypertriglyceridemia and cholesteryl ester transfer protein in transgenic mice. J Clin Invest 94:2457–2467. https://doi.org/10.1172/JCI117614

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su X, Peng D (2020) The exchangeable apolipoproteins in lipid metabolism and obesity. Clin Chim Acta 503:128–135. https://doi.org/10.1016/j.cca.2020.01.015

Article  CAS  PubMed  Google Scholar 

Humardani FM, Mulyanata LT, Dwi Putra SE (2023) Adipose cell-free DNA in diabetes. Clin Chim Acta 539:191–197. https://doi.org/10.1016/j.cca.2022.12.008

Article  CAS  PubMed  Google Scholar 

Cao X, Lu XM, Tuo X et al (2019) Angiotensin-converting enzyme 2 regulates endoplasmic reticulum stress and mitochondrial function to preserve skeletal muscle lipid metabolism. Lipids Health Dis 18:1–8. https://doi.org/10.1186/s12944-019-1145-x

Article  CAS  Google Scholar 

Ma C, Shi T, Song L et al (2022) Angiotensin(1–7) attenuates visceral adipose tissue expansion and lipogenesis by suppression of endoplasmic reticulum stress via Mas receptor. Nutr Metab 19:1–14. https://doi.org/10.1186/s12986-022-00716-x

Article  CAS  Google Scholar 

Saxton SN, Clark BJ, Withers SB et al (2019) Mechanistic links between obesity, diabetes, and blood pressure: role of perivascular adipose tissue. Physiol Rev 99:1701–1763. https://doi.org/10.1152/physrev.00034.2018

Article  CAS  PubMed  Google Scholar 

Corella D, Tai ES, Sorlí JV et al (2011) Association between the APOA2 promoter polymorphism and body weight in Mediterranean and Asian populations: replication of a gene-saturated fat interaction. Int J Obes 35:666–675. https://doi.org/10.1038/ijo.2010.187

Article  CAS  Google Scholar 

Duesing K, Charpentier G, Marre M et al (2009) Evaluating the association of common APOA2variants with type 2 diabetes. BMC Med Genet 10:13. https://doi.org/10.1186/1471-2350-10-13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng Y, Wen S, Huan L et al (2023) Association of ApoE gene polymorphisms with serum lipid levels and the risk of type 2 diabetes mellitus in the Chinese Han population of central China. PeerJ 11:e15226. https://doi.org/10.7717/peerj.15226

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pitchika A, Markus MRP, Schipf S et al (2022) Longitudinal association of Apolipoprotein E polymorphism with lipid profile, type 2 diabetes and metabolic syndrome: results from a 15 year follow-up study. Diabetes Res Clin Pract 185:109778. https://doi.org/10.1016/j.diabres.2022.109778

Article  CAS  PubMed  Google Scholar 

Zhang PH, Gao JL, Pu C et al (2016) A single-nucleotide polymorphism C-724 /del in the proter region of the apolipoprotein M gene is associated with type 2 diabetes mellitus. Lipids Health Dis 15:1–9. https://doi.org/10.1186/s12944-016-0307-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi J, Liu Y, Liu Y et al (2018) Association between ApoE polymorphism and hypertension: a meta-analysis of 28 studies including 5898 cases and 7518 controls. Gene 675:197–207. https://doi.org/10.1016/j.gene.2018.06.097

Article  CAS  PubMed  Google Scholar 

Wang X, He J, Guo H et al (2017) Interactions of six SNPs in APOA1 gene and types of obesity on low HDL-C disease in Xinjiang pastoral area of China. Lipids Health Dis 16:187. https://doi.org/10.1186/s12944-017-0581-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Luis DA, Izaola O, Primo D, Aller R (2019) Implication of the rs670 variant of APOA1 gene with lipid profile, serum adipokine levels and components of metabolic syndrome in adult obese subjects. Clin Nutr 38:407–411. https://doi.org/10.1016/j.clnu.2017.12.007

Article  CAS  PubMed  Google Scholar 

Hsu M-C, Chang C-S, Lee K-T et al (2013) Central obesity in males affected by a dyslipidemia-associated genetic polymorphism on APOA1/C3/A4/A5 gene cluster. Nutr Diabetes 3:e61–e61. https://doi.org/10.1038/nutd.2013.2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lakbakbi el Yaagoubi F, Charoute H, Bakhchane A et al (2015) Association analysis of APOA5 rs662799 and rs3135506 polymorphisms with obesity in Moroccan patients. Pathol Biol 63:243–247. https://doi.org/10.1016/j.patbio.2015.09.002

Comments (0)

No login
gif