Investigation of miltefosine-model membranes interactions at the molecular level for two different PS levels modeling cancer cells

Ali S, Minchey S, Janoff A, Mayhew E (2000) A differential scanning calorimetry study of phosphocholines mixed with paclitaxel and its bromoacylated taxanes. Biophys J 78(1):246–256. https://doi.org/10.1016/S0006-3495(00)76588-X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alves AC, Ribeiro D, Nunes C, Reis S (2016) Biophysics in cancer: the relevance of drug-membrane interaction studies. Biochim Biophys Acta 1858:2231–2244. https://doi.org/10.1016/j.bbamem.2016.06.025

Article  CAS  PubMed  Google Scholar 

Arrieta MRR, Canseco EU, Casas SP (2020) Simultaneous encapsulation of hydrophilic and lipophilic molecules in liposomes of DSPC. Thermochimica Acta. https://doi.org/10.1016/j.tca.2019.178462

Article  Google Scholar 

Canseco EU, Casas SP (2020) Spherical and tubular dimyristoylphosphatidylcholine liposomes. J Therm Anal Calorim 139:399–409. https://doi.org/10.1007/s10973-019-08416-0

Article  CAS  Google Scholar 

Casal HL, Mantsch HH (1984) Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta BBA - Rev Biomembr 779:381–401. https://doi.org/10.1016/0304-4157(84)90017-0

Article  CAS  Google Scholar 

Chiou JS, Krishna PR, Kamaya H, Ueda I (1992) Alcohols dehydrate lipid membranes: an infrared study on hydrogen bonding. Biochim. Biophys Acta 1110:225–233. https://doi.org/10.1016/0005-2736(92)90363-Q

Article  CAS  Google Scholar 

Diaz YMZ, Fanani ML (2017) Crossregulation between the insertion of Hexadecylphosphocholine (miltefosine) into lipid membranes and their rheology and lateral structure. Biochim Biophys Acta 891–1899. https://doi.org/10.1016/j.bbamem.2017.06.008. ,1859,

Dorlo TPC, Balasegaram M, Beijnen JH, Vries PJ (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67:2576–2597. https://doi.org/10.1093/jac/dks275

Article  CAS  PubMed  Google Scholar 

El Maghraby GMM, Williams AC, Barry BW (2005) Drug interaction and location in liposomes: correlation with polar surface areas. Int J Pharm 292:179–85. https://doi.org/10.1016/j.ijpharm.2004.11.037

Ergun S, Demir P, Uzbay T, Severcan F (2014) Agomelatine strongly interacts with zwitterionic DPPC and charged DPPG membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838:112798–2806. https://doi.org/10.1016/j.bbamem.2014.07.025

Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917. https://doi.org/10.1002/ijc.25516

Article  CAS  PubMed  Google Scholar 

Garidel P, Johann C, Blume A (2000) Thermodynamics of lipid organization and domain formation in phospholipid bilayers. J Liposome Res 10:131–158. https://doi.org/10.3109/08982100009029383

Article  CAS  Google Scholar 

Harris JS, Epps DE, Davio SR, Kezdy FJ (1995) Evidence for transbilayer, tail-to-tail cholesterol dimers in dipalmitoylglycerophosphocholine liposomes. Biochemistry 34:3851–7. https://doi.org/10.1021/bi00011a043

Hilgard P, Klenner T, Stekar J, Nossner G, Kutscher B, Engel J (1997) D- 21266, a new heterocyclic alkylphospholipid with antitumour activity. Eur J Cancer 33:442–446. https://doi.org/10.1016/S0959-8049(97)89020-X

Article  CAS  PubMed  Google Scholar 

Jain MK, Wu NM (1977) Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer: III. Phase transition in lipid bilayer. J Membr Biol 34:157–201

Article  CAS  Google Scholar 

Jones MN, Chapman D (1995) Micelles, monolayers, and biomembranes, first ed. Wiley-Liss, New York, pp 75–77

Google Scholar 

Konstantinidi A, Naziris N, Chountoulesi M, Kiriakidi S, Sartori B, Kolokouris D, Amentisch H, Mali G, Ntountaniotis D, Demetzos C, Mavromoustakos T, Kolocouris A (2018) Comparative perturbation effects exerted by the influenza a M2 WT protein inhibitors amantadine and the spiro [pyrrolidine-2,20-adamantane] variant AK13 to membrane bilayers studied using biophysical experiments and molecular dynamics simulations. J Phys Chem B 122:9877–9895. https://doi.org/10.1021/acs.jpcb.8b07071

Article  CAS  PubMed  Google Scholar 

Kranenburg M, Vlaar M, Smit B (2004) Simulating induced interdigitation in membranes. Biophys J 87:1596–1605. https://doi.org/10.1529/biophysj.104.045005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewis RN, McElhaney RN (1998) The structure and organization of phospholipid bilayers as revealed by infrared spectroscopy. Chem Phys Lipids 96(1–2):9–21. https://doi.org/10.1016/S0009-3084(98)00077-2

Article  CAS  Google Scholar 

Mady MM, Shafaa MW, Abbase ER, Fahium AH (2012) Interaction of doxorubicin and dipalmitoylphosphatidylcholine liposomes. Cell Biochem Biophys 62:481–486. https://doi.org/10.1007/s12013-011-9334-x

Article  CAS  PubMed  Google Scholar 

Mantsch HH (1984) Biological applications of fourier transform infrared spectroscopy. A study of phase transitions in biomembranes. J Mol Struct 113:201–212. https://doi.org/10.1016/0022-2860(84)80145-3

Article  CAS  Google Scholar 

Mantsch HH, McElhaney RN (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids 57(2–3):213–226. https://doi.org/10.1016/0009-3084(91)90077-O

Article  CAS  PubMed  Google Scholar 

Maswadeh H, Demetzos C, Daliani I, Kyrikou I, Mavromoustakos T, Tsortos A, Nounesis G (2002) A molecular basis explanation of the dynamic and thermal effects of vinblastine sulfate upon dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta- Biomembranes. 1567:49–55. https://doi.org/10.1016/S0005-2736(02)00564-3

McElhaney RN (1982) The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. Chem Phys Lipids 30(2–3):229–259. https://doi.org/10.1016/0009-3084(82)90053-6

Article  CAS  PubMed  Google Scholar 

Merz B Jr (ed) (1996) Biological membranes:a molecular perspective from computation and experiment. Birkhauser, Boston

Google Scholar 

Mollinedo F (2007) Antitumour ether lipids: proapoptotic agents with multiple therapeutic indications. Expert Opin Ther Pat 17:385–405. https://doi.org/10.1517/13543776.17.4.385

Article  CAS  Google Scholar 

Murray M, Hraiki A, Bebawy M, Pazderka C, Rawling T (2015) Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Pharmacol Ther 150:109–128. https://doi.org/10.1016/j.pharmthera.2015.01.008

Article  CAS  PubMed  Google Scholar 

Ozcelik Cetinel Z, Bilge D (2022) The effects of miltefosine on the structure and dynamics of DPPC and DPPS liposomes mimicking normal and cancer cell membranes: FTIR and DSC studies. J Mol Liq 356:119041. https://doi.org/10.1016/j.molliq.2022.119041

Article  CAS  Google Scholar 

Pachioni JA, Magalhaes JG, Lima EJC, Bueno LM, Barbosa JF, Sa MM, Rangel-Yagui CO (2013) Alkylphospholipids- a promising class of Che- motherapeutic agents with a broad pharmacological spectrum. J Pharm Pharm Sci 16:742–759. https://doi.org/10.18433/J3CW23

Article  PubMed  Google Scholar 

Petit K, Suwalskya M, Colinaa JR, Aguilarb LF, Rzeminskac MJ, Strzalkac K (2019) In vitro effects of the antitumor drug miltefosine on human erythrocytes and molecular models of its membrane. BBA-Biomembranes 1891:12–25. https://doi.org/10.1016/j.bbamem.2018.10.009

Article  CAS  Google Scholar 

Phillips MC (1972) The physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes. In Progress in surface and membrane science., 5,139–221. https://doi.org/10.1016/B978-0-12-571805-9.50009-9

Pires F, Magalhaes-Mota G, Geraldo VPN, Ribeiro PA, Oliveira ON, Raposo M (2020) The impact of blue light in monolayers representing tumorigenic and nontumorigenic cell membranes containing epigallocatechin-3-gallate. Colloids Surf B: Biointerfaces 193:111129. https://doi.org/10.1016/j.colsurfb.2020.111129S0927-7765(20)30359-3.

Article  PubMed  Google Scholar 

Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B (2018) Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm 539(1–2):104–111. https://doi.org/10.1016/j.ijpharm.2018.01.034

Article  CAS  PubMed  Google Scholar 

Ran S, Thorpe PE (2002) Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy. Int J Radiat Oncol Biol Phys 54:1479–1484. https://doi.org/10.1016/S0360-3016(02)03928-7

Article  CAS  PubMed  Google Scholar 

Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140

CAS  PubMed 

Comments (0)

No login
gif