Identification of miRNA-Target Gene-Transcription Factor Regulatory Network as Functional Motifs Involved in Glomerular Diabetic Nephropathy

Samsu, N., Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment, BioMed Res. Int., 2021.

Watanabe, K., Sato, E., Mishima, E., et al., What’s new in the molecular mechanisms of diabetic kidney disease: recent advances, Int. J. Mol. Sci., 2022, vol. 24, no. 1, p. 570.

Article  PubMed  PubMed Central  Google Scholar 

Tuleta, I. and Frangogiannis, N.G., Diabetic fibrosis, Biochim. Biophys. Acta, Mol. Basis Dis., 2021, vol. 1867, no. 4, p. 166044.

Article  CAS  Google Scholar 

Haller, H., Ji, L., Stahl, K., et al., Molecular mechanisms and treatment strategies in diabetic nephropathy: new avenues for calcium dobesilate-free radical scavenger and growth factor inhibition, BioMed Res. Int., 2017.

Zoja, C., Xinaris, C., Macconi, D., Diabetic nephropathy: novel molecular mechanisms and therapeutic targets, Front. Pharmacol., 2020, no. 11, p. 586892.

Lassén, E. and Daehn, I.S., Molecular mechanisms in early diabetic kidney disease: glomerular endothelial cell dysfunction, Int. J. Mol. Sci., 2020, vol. 21, no. 24, p. 9456.

Article  PubMed  PubMed Central  Google Scholar 

Thomas, H.Y. and Ford Versypt, A.N., Pathophysiology of mesangial expansion in diabetic nephropathy: mesangial structure, glomerular biomechanics, and biochemical signaling and regulation, J. Biol. Eng., 2022, vol. 16, no. 1, p. 19.

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Y., Jin, D., Kang, X., et al., Signaling pathways involved in diabetic renal fibrosis, Front. Cell Dev. Biol., 2021, no. 9, p. 696542.

Alvarez, M. and DiStefano, J., Towards microRNA-based therapeutics for diabetic nephropathy, Diabetologia, 2013, vol. 56, no. 3, pp. 444—456.

Article  CAS  PubMed  Google Scholar 

Tang, J., Yao, D., Yan, H., et al., The role of microRNAs in the pathogenesis of diabetic nephropathy, Int. J. Endocrinol., 2019.

Liu, J., Duan, G., Yang, W., et al., Identification of transcription factors related to diabetic tubulointerstitial injury, J. Transl. Med., 2023, vol. 21, no. 1, pp. 1—12.

Google Scholar 

Simpson, K., Wonnacott, A., Fraser, D.J., et al., MicroRNAs in diabetic nephropathy: from biomarkers to therapy, Curr. Diabetes Rep., 2016, vol. 16, no. 3, p. 35.

Article  Google Scholar 

Kato, M. and Natarajan, R., MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets, Ann. N.Y. Acad. Sci., 2015, vol. 1353, no. 1, p. 72.

Article  PubMed  PubMed Central  Google Scholar 

Ahmed, I., Ziab, M., Da’as, S., et al., Network-based identification and prioritization of key transcriptional factors of diabetic kidney disease, Comput. Struct. Biotechnol. J., 2023, no. 21, pp. 716—730.

Tang, W., Gao, Y., Li, Y., et al., Gene networks implicated in diabetic kidney disease, Eur. Rev. Med. Pharmacol. Sci., 2012, vol. 16, no. 14, pp. 1967—1973.

CAS  PubMed  Google Scholar 

Tao, Y., Wei, X., Yue, Y., et al., Extracellular vesicle-derived AEBP1 mRNA as a novel candidate biomarker for diabetic kidney disease, J. Transl. Med., 2021, vol. 19, no. 1, pp. 1—15.

Article  Google Scholar 

Jiao, Y., Jiang, S., Wang, Y., et al., Activation of complement C1q and C3 in glomeruli might accelerate the progression of diabetic nephropathy: evidence from transcriptomic data and renal histopathology, J. Diabetes Invest., 2022, vol. 13, no. 5, pp. 839—849.

Article  CAS  Google Scholar 

Guo, H., Yan, Z., Hu, Y., et al., Complement C7 is specifically expressed in mesangial cells and is a potential diagnostic biomarker for diabetic nephropathy and is regulated by miR-494-3p and miR-574-5p, Diabetes, Metab. Syndr. Obes.: Targets Ther., 2021, vol. 14, pp. 3077—3088.

Article  Google Scholar 

Jaffar, J., Michaylov, S., Stuckey, P.J., and Yap, R.H.C., The CLP (ℛ) language and system, in ACM Transactions on Programming Languages and Systems, 1992, vol. 14, pp. 339—395.

Article  Google Scholar 

Davis, A.P., Grondin, C.J., Johnson, R.J., et al., Comparative toxicogenomics database (CTD): update 2021, Nucleic Acids Res., 2021, vol. 49, no. D1, pp. D1138—D1143.

Article  CAS  PubMed  Google Scholar 

Jia, A., Xu, L., and Wang, Y., Venn diagrams in bioinformatics. Briefings Bioinf., 2021, vol. 22, no. 5, p. bbab108.

Huang, D.W., Sherman, B.T., Tan, Q., et al., DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists, Nucleic Acids Res., 2007, vol. 35, suppl. 2, pp. W169—W175.

Article  PubMed  PubMed Central  Google Scholar 

Huang, H.-Y., Lin, Y.-C.-D., Li, J., et al., miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database, Nucleic Acids Res., 2020, vol. 48, no. D1, pp. D148—D154.

CAS  PubMed  Google Scholar 

McGeary, S.E., Lin, K.S., Shi, C.Y., et al., The biochemical basis of microRNA targeting efficacy, Science, 2019, vol. 366, no. 6472, p. eaav1741.

Han, H., Cho, J.-W., Lee, S., et al., TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions, Nucleic Acids Res., 2018, vol. 46, no. D1, pp. D380—D386.

Article  CAS  PubMed  Google Scholar 

Khan, A., Fornes, O., Stigliani, A., et al., JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework, Nucleic Acids Res., 2018, vol. 46, no. D1, pp. D260—D266.

Article  CAS  PubMed  Google Scholar 

Tong, Z., Cui, Q., Wang, J., et al., TransmiR v2. 0: an updated transcription factor-microRNA regulation database, Nucleic Acids Res., 2019, vol. 47, no. D1, p. D253—D258.

Article  CAS  PubMed  Google Scholar 

Wernicke, S. and Rasche, F., FANMOD: a tool for fast network motif detection, Bioinformatics, 2006, vol. 22, no. 9, pp. 1152—1153.

Article  CAS  PubMed  Google Scholar 

Smoot, M.E., Ono, K., Ruscheinski, J., et al., Cytoscape 2.8: new features for data integration and network visualization, Bioinformatics, 2011, vol. 27, no. 3, pp. 431—432.

Article  CAS  PubMed  Google Scholar 

Frąk, W., Kućmierz, J., Szlagor, M., et al., New insights into molecular mechanisms of chronic kidney disease, Biomedicines, 2022, vol. 10, no. 11, p. 2846.

Article  PubMed  PubMed Central  Google Scholar 

Chuang, P.Y. and He, J.C., JAK/STAT signaling in renal diseases, Kidney Int., 2010, vol. 78, no. 3, pp. 231—234.

Article  CAS  PubMed  Google Scholar 

Lu, T.-C., Wang, Z.-H., Feng, X., et al., Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy, Kidney Int., 2009, vol. 76, no. 1, pp. 63—71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coto, E., Díaz-Corte, C., Tranche, S., et al., Gene variants in the NF-KB pathway (NFKB1, NFKBIA, NFKBIZ) and their association with type 2 diabetes and impaired renal function, Human Immunol., 2018, vol. 79, no. 6, pp. 494—498.

Article  CAS  Google Scholar 

Gao, P., Wei, Y., Zhang, Z., et al., Synergistic effects of c-Jun and SP1 in the promotion of TGFβ1-mediated diabetic nephropathy progression, Exp. Mol. Pathol., 2016, vol. 100, no. 3, pp. 441—450.

Article  CAS  PubMed  Google Scholar 

Zhong, X., Chung, A.C.K., Chen, H.-Y., et al., miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes, Diabetologia, 2013, vol. 56, no. 3, pp. 663—674.

Article  CAS  PubMed  Google Scholar 

Lin, S., Teng, J., Li, J., et al., Association of chemerin and vascular endothelial growth factor (VEGF) with diabetic nephropathy, Med. Sci. Monit., 2016, no. 22, p. 3209.

Schneider, K.K., Frings, C., Meyer, J., et al., The role of the glucocorticoid receptor gene (NR3C1) for the processing of aversive stimuli, Neurosci. Res., 2016, no. 107, pp. 8—13.

Oh, I.-H. and Reddy, E.P., The myb gene family in cell growth, differentiation and apoptosis, Oncogene, 1999, vol. 18, no. 19, pp. 3017—3033.

Article  CAS  PubMed  Google Scholar 

Tu, C., Wang, L., Wei, L., et al., The role of circular RNA in diabetic nephropathy, Int. J. Med. Sci., 2022, vol. 19, no. 5, p. 916.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang, R., Cao, X., Zhu, Y., et al., Hsa_circ_0037128 aggravates high glucose-induced podocytes injury in diabetic nephropathy through mediating miR-31-5p/KLF9, Autoimmunity, 2022, vol. 55, no. 4, pp. 254—263.

Article  CAS  PubMed  Google Scholar 

Sun, J., Wang, J., Lu, W., et al., MiR-325-3p inhibits renal inflammation and fibrosis by targeting CCL19 in diabetic nephropathy, Clin. Exp. Pharmacol. Physiol., 2020, vol. 47, no. 11, pp. 1850—1860.

Article  CAS  PubMed  Google Scholar 

Wang, W., Feng, J., Zhou, H., et al., Circ_0123996 promotes cell proliferation and fibrosis in mouse mesangial cells through sponging miR-149-5p and inducing Bach1 expression, Gene, 2020, vol. 761, p. 144971.

Article  CAS 

Comments (0)

No login
gif