High Magnesium Promotes the Recovery of Binocular Vision from Amblyopia via TRPM7

Hensch TK, Quinlan EM. Critical periods in amblyopia. Vis Neurosci 2018, 35: E014.

Article  PubMed  PubMed Central  Google Scholar 

Maconachie GD, Gottlob I. The challenges of amblyopia treatment. Biomed J 2015, 38: 510–516.

Article  PubMed  Google Scholar 

Birch EE. Amblyopia and binocular vision. Prog Retin Eye Res 2013, 33: 67–84.

Article  PubMed  Google Scholar 

Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci 2005, 6: 877–888.

Article  CAS  PubMed  Google Scholar 

Cisneros-Franco JM, Voss P, Thomas ME, de Villers-Sidani E. Critical periods of brain development. Handb Clin Neurol 2020, 173: 75–88.

Article  PubMed  Google Scholar 

Adams GGW, Sloper JJ. Update on squint and amblyopia. J R Soc Med 2003, 96: 3–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 1970, 206: 419–436.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morishita H, Hensch TK. Critical period revisited: Impact on vision. Curr Opin Neurobiol 2008, 18: 101–107.

Article  CAS  PubMed  Google Scholar 

Gordon JA, Stryker MP. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 1996, 16: 3274–3286.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Southwell DG, Froemke RC, Alvarez-Buylla A, Stryker MP, Gandhi SP. Cortical plasticity induced by inhibitory neuron transplantation. Science 2010, 327: 1145–1148.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamanaka R, Shindo Y, Oka K. Magnesium is a key player in neuronal maturation and neuropathology. Int J Mol Sci 2019, 20: 3439.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altura BM, Altura BT. Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. Scand J Clin Lab Invest Suppl 1996, 224: 211–234.

Article  CAS  PubMed  Google Scholar 

Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984, 309: 261–263.

Article  CAS  PubMed  Google Scholar 

Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984, 307: 462–465.

Article  CAS  PubMed  Google Scholar 

Slutsky I, Sadeghpour S, Li B, Liu G. Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron 2004, 44: 835–849.

Article  CAS  PubMed  Google Scholar 

Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B. Enhancement of learning and memory by elevating brain magnesium. Neuron 2010, 65: 165–177.

Article  CAS  PubMed  Google Scholar 

Zhou X, Huang Z, Zhang J, Chen JL, Yao PW, Mai CL, et al. Chronic oral administration of magnesium-L-threonate prevents oxaliplatin-induced memory and emotional deficits by normalization of TNF-α/NF-κB signaling in rats. Neurosci Bull 2021, 37: 55–69.

Article  CAS  PubMed  Google Scholar 

Liu H, Li Y, Wang Y, Wang X, An X, Wang S, et al. The distinct role of NR2B subunit in the enhancement of visual plasticity in adulthood. Mol Brain 2015, 8: 49.

Article  PubMed  PubMed Central  Google Scholar 

Cang J, Kalatsky VA, Löwel S, Stryker MP. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Vis Neurosci 2005, 22: 685–691.

Article  PubMed  PubMed Central  Google Scholar 

Baroncelli L, Braschi C, Maffei L. Visual depth perception in normal and deprived rats: Effects of environmental enrichment. Neuroscience 2013, 236: 313–319.

Article  CAS  PubMed  Google Scholar 

Wang BS, Sarnaik R, Cang J. Critical period plasticity matches binocular orientation preference in the visual cortex. Neuron 2010, 65: 246–256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levine JN, Chen H, Gu Y, Cang J. Environmental enrichment rescues binocular matching of orientation preference in the mouse visual cortex. J Neurosci 2017, 37: 5822–5833.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katano T, Takao K, Abe M, Yamazaki M, Watanabe M, Miyakawa T, et al. Distribution of Caskin1 protein and phenotypic characterization of its knockout mice using a comprehensive behavioral test battery. Mol Brain 2018, 11: 63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Felgerolle C, Hébert B, Ardourel M, Meyer-Dilhet G, Menuet A, Pinto-Morais K, et al. Visual behavior impairments as an aberrant sensory processing in the mouse model of fragile X syndrome. Front Behav Neurosci 2019, 13: 228.

Article  PubMed  PubMed Central  Google Scholar 

Wang BS, Bernardez Sarria MS, An X, He M, Alam NM, Prusky GT, et al. Retinal and callosal activity-dependent chandelier cell elimination shapes binocularity in primary visual cortex. Neuron 2021, 109: 502-515.e7.

Article  CAS  PubMed  Google Scholar 

Han KS, Cooke SF, Xu W. Experience-dependent equilibration of AMPAR-mediated synaptic transmission during the critical period. Cell Rep 2017, 18: 892–904.

Article  CAS  PubMed  Google Scholar 

Chan J, Hao X, Liu Q, Cang J, Gu Y. Closing the critical period is required for the maturation of binocular integration in mouse primary visual cortex. Front Cell Neurosci 2021, 15: 749265.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ringach DL, Shapley RM, Hawken MJ. Orientation selectivity in macaque V1: Diversity and laminar dependence. J Neurosci 2002, 22: 5639–5651.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazziotti R, Baroncelli L, Ceglia N, Chelini G, Sala GD, Magnan C, et al. MiR-132/212 is required for maturation of binocular matching of orientation preference and depth perception. Nat Commun 2017, 8: 15488.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 1962, 160: 106–154.

Article  CAS  PubMed 

Comments (0)

No login
gif