Abad-Jiménez Z, López-Domènech S, García-Gargallo C, Vezza T, Gómez-Abril SÁ, Morillas C, Díaz-Pozo P, Falcón R, Bañuls C, Víctor VM, Rocha M (2022) Roux-en-Y gastric bypass modulates AMPK, autophagy and inflammatory response in leukocytes of obese patients. Biomedicines. https://doi.org/10.3390/biomedicines10020430
Article PubMed PubMed Central Google Scholar
Abedin F, Kandel N, Tatulian SA (2021) Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Sci Rep 11(1):19262. https://doi.org/10.1038/s41598-021-98644-y
Article CAS PubMed PubMed Central Google Scholar
Adesina AM, Veo BL, Courteau G, Mehta V, Wu X, Pang K, Liu Z, Li X-N, Peters L (2015) FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol 46(12):1859–1871. https://doi.org/10.1016/j.humpath.2015.08.003
Article CAS PubMed Google Scholar
Ahmed ME, Iyer S, Thangavel R, Kempuraj D, Selvakumar GP, Raikwar SP, Zaheer S, Zaheer A (2017) Co-localization of glia maturation factor with NLRP3 inflammasome and autophagosome markers in human Alzheimer’s disease brain. J Alzheimers Dis 60(3):1143–1160. https://doi.org/10.3233/JAD-170634
Article CAS PubMed PubMed Central Google Scholar
Aizawa S, Hoki M, Yamamuro Y (2017) Lactoferrin promotes autophagy via AMP-activated protein kinase activation through low-density lipoprotein receptor-related protein 1. Biochem Biophys Res Commun 493(1):509–513. https://doi.org/10.1016/j.bbrc.2017.08.160
Article CAS PubMed Google Scholar
Assaf L, Eid AA, Nassif J (2022) Role of AMPK/mTOR, mitochondria, and ROS in the pathogenesis of endometriosis. Life Sci 306:120805. https://doi.org/10.1016/j.lfs.2022.120805
Article CAS PubMed Google Scholar
Babić Leko M, Nikolac Perković M, Klepac N, Štrac DŠ, Borovečki F, Pivac N, Hof PR, Šimić G (2020) IL-1β, IL-6, IL-10, and TNFα single nucleotide polymorphisms in human influence the susceptibility to Alzheimer’s disease pathology. J Alzheimers Dis 75(3):1029–1047. https://doi.org/10.3233/JAD-200056
Article CAS PubMed Google Scholar
Behl T, Kaur D, Sehgal A, Singh S, Makeen HA, Albratty M, Abdellatif AAH, Dachani SR, Bungau S (2022) Exploring the potential role of rab5 protein in endo-lysosomal impairment in Alzheimer’s disease. Biomed Pharmacother 148:112773. https://doi.org/10.1016/j.biopha.2022.112773
Article CAS PubMed Google Scholar
Boada C, Zinger A, Tsao C, Zhao P, Martinez JO, Hartman K, Naoi T, Sukhoveshin R, Sushnitha M, Molinaro R, Trachtenberg B, Cooke JP, Tasciotti E (2020) Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res 126(1):25–37. https://doi.org/10.1161/CIRCRESAHA.119.315185
Article CAS PubMed Google Scholar
Chun Y, Kim J (2021) AMPK-mTOR signaling and cellular adaptations in hypoxia. Int J Mol Sci. https://doi.org/10.3390/ijms22189765
Article PubMed PubMed Central Google Scholar
Dai S, Zhou F, Sun J, Li Y (2021) NPD1 enhances autophagy and reduces hyperphosphorylated tau and amyloid-β42 by inhibiting GSK3β activation in N2a/APP695swe cells. J Alzheimers Dis 84(2):869–881
Article CAS PubMed Google Scholar
Fasano CA, Phoenix TN, Kokovay E, Lowry N, Elkabetz Y, Dimos JT, Lemischka IR, Studer L, Temple S (2009) Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev 23(5):561–574. https://doi.org/10.1101/gad.1743709
Article CAS PubMed PubMed Central Google Scholar
Feng Y-S, Tan Z-X, Wu L-Y, Dong F, Zhang F (2020) The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res Rev 64:101192. https://doi.org/10.1016/j.arr.2020.101192
Article CAS PubMed Google Scholar
Freitag K, Sterczyk N, Wendlinger S, Obermayer B, Schulz J, Farztdinov V, Mülleder M, Ralser M, Houtman J, Fleck L, Braeuning C, Sansevrino R, Hoffmann C, Milovanovic D, Sigrist SJ, Conrad T, Beule D, Heppner FL, Jendrach M (2022) Spermidine reduces neuroinflammation and soluble amyloid beta in an Alzheimer’s disease mouse model. J Neuroinflammation 19(1):172. https://doi.org/10.1186/s12974-022-02534-7
Article CAS PubMed PubMed Central Google Scholar
Friedland RP, Chapman MR (2017) The role of microbial amyloid in neurodegeneration. PLoS Pathog 13(12):e1006654. https://doi.org/10.1371/journal.ppat.1006654
Article CAS PubMed PubMed Central Google Scholar
Gao J, Chen X, Ma T, He B, Li P, Zhao Y, Ma Y, Zhuang J, Yin Y (2020) PEG-ceramide nanomicelles induce autophagy and degrade tau proteins in N2a cells. Int J Nanomedicine 15:6779–6789
Article CAS PubMed PubMed Central Google Scholar
Guerrini R, Parrini E (2012) Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies. Epilepsia 53(12):2067–2078. https://doi.org/10.1111/j.1528-1167.2012.03656.x
Article CAS PubMed Google Scholar
He Z, Fang Q, Li H, Shao B, Zhang Y, Zhang Y, Han X, Guo R, Cheng C, Guo L, Shi L, Li A, Yu C, Kong W, Zhao C, Gao X, Chai R (2019) The role of FOXG1 in the postnatal development and survival of mouse cochlear hair cells. Neuropharmacology 144:43–57. https://doi.org/10.1016/j.neuropharm.2018.10.021
Article CAS PubMed Google Scholar
He Z-H, Li M, Fang Q-J, Liao F-L, Zou S-Y, Wu X, Sun H-Y, Zhao X-Y, Hu Y-J, Xu X-X, Chen S, Sun Y, Chai R-J, Kong W-J (2021) FOXG1 promotes aging inner ear hair cell survival through activation of the autophagy pathway. Autophagy 17(12):4341–4362. https://doi.org/10.1080/15548627.2021.1916194
Article CAS PubMed PubMed Central Google Scholar
Hettige NC, Peng H, Wu H, Zhang X, Yerko V, Zhang Y, Jefri M, Soubannier V, Maussion G, Alsuwaidi S, Ni A, Rocha C, Krishnan J, McCarty V, Antonyan L, Schuppert A, Turecki G, Fon EA, Durcan TM, Ernst C (2022) FOXG1 dose tunes cell proliferation dynamics in human forebrain progenitor cells. Stem Cell Rep 17(3):475–488. https://doi.org/10.1016/j.stemcr.2022.01.010
Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32:121–130. https://doi.org/10.1016/j.ceb.2015.02.004
Article CAS PubMed Google Scholar
Hong Y, Liu Y, Yu D, Wang M, Hou Y (2019) The neuroprotection of progesterone against Aβ-induced NLRP3-Caspase-1 inflammasome activation via enhancing autophagy in astrocytes. Int Immunopharmacol 74:105669. https://doi.org/10.1016/j.intimp.2019.05.054
Article CAS PubMed Google Scholar
Hradek AC, Lee H-P, Siedlak SL, Torres SL, Jung W, Han AH, Lee H-g (2015) Distinct chronology of neuronal cell cycle re-entry and tau pathology in the 3xTg-AD mouse model and Alzheimer’s disease patients. J Alzheimers Dis 43(1):57–65. https://doi.org/10.3233/JAD-141083
Article CAS PubMed PubMed Central Google Scholar
Imai Y, Koseki Y, Hirano M, Nakamura S (2021) Nutrigenomic studies on the ameliorative effect of enzyme-digested phycocyanin in Alzheimer’s disease model mice. Nutrients. https://doi.org/10.3390/nu13124431
Article PubMed PubMed Central Google Scholar
Ito M, Yurube T, Kanda Y, Kakiuchi Y, Takeoka Y, Takada T, Kuroda R, Kakutani K (2021) Inhibition of autophagy at different stages by ATG5 knockdown and chloroquine supplementation enhances consistent human disc cellular apoptosis and senescence induction rather than extracellular matrix catabolism. Int J Mol Sci. https://doi.org/10.3390/ijms22083965
Article PubMed PubMed Central Google Scholar
Jacobs KA, André-Grégoire G, Maghe C, Thys A, Li Y, Harford-Wright E, Trillet K, Douanne T, Alves Nicolau C, Frénel J-S, Bidère N, Gavard J (2020) Paracaspase MALT1 regulates glioma cell survival by controlling endo-lysosome homeostasis. EMBO J 39(1):e102030.
Comments (0)