PCDH11X mutation as a potential biomarker for immune checkpoint therapies in lung adenocarcinoma

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

Article  CAS  PubMed  Google Scholar 

Schabath MB, Cote ML (2019) Cancer progress and priorities: lung cancer. Cancer Epidemiol Biomark Prev 28:1563–1579. https://doi.org/10.1158/1055-9965.EPI-19-0221

Article  Google Scholar 

Leiter A, Veluswamy RR, Wisnivesky JP (2023) The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol 20:624–639. https://doi.org/10.1038/s41571-023-00798-3

Article  PubMed  Google Scholar 

Han X, Li F, Fang Z, Gao Y, Li F, Fang R, Yao S, Sun Y, Li L, Zhang W et al (2014) Transdifferentiation of lung adenocarcinoma in mice with Lkb1 deficiency to squamous cell carcinoma. Nat commun. https://doi.org/10.1038/ncomms4261

Article  PubMed  PubMed Central  Google Scholar 

Quintanal-Villalonga A, Taniguchi H, Zhan YA, Hasan MM, Chavan SS, Meng F, Uddin F, Allaj V, Manoj P, Shah NS et al (2021) Comprehensive molecular characterization of lung tumors implicates AKT and MYC signaling in adenocarcinoma to squamous cell transdifferentiation. J hematol oncol. https://doi.org/10.1186/s13045-021-01186-z

Article  PubMed  PubMed Central  Google Scholar 

Zhu L, Liu Y, Gao H, Liu J, Zhou Q, Luo F (2022) Case report: partial response following nivolumab plus docetaxel in a patient with EGFR exon 20 deletion/insertion (p.N771delinsGF) mutant lung adenocarcinoma transdifferentiated from squamous cell carcinoma. Front cell dev biol. https://doi.org/10.3389/fcell.2021.755135

Article  PubMed  PubMed Central  Google Scholar 

Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, Mariotto AB, Lowy DR, Feuer EJ (2020) The effect of advances in lung-cancer treatment on population mortality. N Engl J Med 383:640–649. https://doi.org/10.1056/NEJMoa1916623

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, Hermes B, Çay Şenler F, Csőszi T, Fülöp A et al (2018) Pembrolizumab plus chemotherapy for squamous non–small-cell lung cancer. N Engl J Med 379:2040–2051. https://doi.org/10.1056/NEJMoa1810865

Article  CAS  PubMed  Google Scholar 

Lu S, Wang J, Cheng Y, Mok T, Chang J, Zhang L, Feng J, Tu H-Y, Wu L, Zhang Y et al (2021) Nivolumab versus docetaxel in a predominantly Chinese patient population with previously treated advanced non-small cell lung cancer: 2-year follow-up from a randomized, open-label, phase 3 study (CheckMate 078). Lung Cancer 152:7–14. https://doi.org/10.1016/j.lungcan.2020.11.013

Article  CAS  PubMed  Google Scholar 

Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118:9–16. https://doi.org/10.1038/bjc.2017.434

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng H, Tong F, Bin Y, Peng L, Gao X, Xia X, Yi X, Dong X (2022) The predictive value of PAK7 mutation for immune checkpoint inhibitors therapy in non-small cell cancer. Front Immunol 13:834142. https://doi.org/10.3389/fimmu.2022.834142

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Roy FJNRC (2014) Beyond E-cadherin: roles of other cadherin superfamily members in cancer. 14: 121–134

Rouget-Quermalet V, Giustiniani J, Marie-Cardine A, Beaud G, Besnard F, Loyaux D, Ferrara P, Leroy K, Shimizu N, Gaulard P et al (2006) Protocadherin 15 (PCDH15): a new secreted isoform and a potential marker for NK/T cell lymphomas. Oncogene 25:2807–2811. https://doi.org/10.1038/sj.onc.1209301

Article  CAS  PubMed  Google Scholar 

Vazquez-Cintron EJ, Monu NR, Burns JC, Blum R, Chen G, Lopez P, Ma J, Radoja S, Frey AB (2012) Protocadherin-18 is a novel differentiation marker and an inhibitory signaling receptor for CD8+ effector memory T cells. PLoS ONE 7:e36101. https://doi.org/10.1371/journal.pone.0036101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frey AB (2017) The inhibitory signaling receptor protocadherin-18 regulates tumor-infiltrating CD8(+) T-cell function. Cancer Immunol Res 5:920–928. https://doi.org/10.1158/2326-6066.CIR-17-0187

Article  CAS  PubMed  Google Scholar 

Zhu G, Ren D, Lei X, Shi R, Zhu S, Zhou N, Zu L, Mello RA, Chen J, Xu S (2021) Mutations associated with no durable clinical benefit to immune checkpoint blockade in non-S-cell lung cancer. Cancers (Basel). https://doi.org/10.3390/cancers13061397

Article  PubMed  PubMed Central  Google Scholar 

Feng Z, Yin Y, Liu B, Zheng Y, Shi D, Zhang H, Qin J (2022) Prognostic and immunological role of FAT family genes in non-small cell lung cancer. Cancer Control 29:10732748221076682. https://doi.org/10.1177/10732748221076682

Article  PubMed  PubMed Central  Google Scholar 

Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, Ni A, Novik JB, Mangarin LMB, Abu-Akeel M et al (2018) Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33(843–852):e844. https://doi.org/10.1016/j.ccell.2018.03.018

Article  CAS  Google Scholar 

Miao D, Margolis CA, Vokes NI, Liu D, Taylor-Weiner A, Wankowicz SM, Adeegbe D, Keliher D, Schilling B, Tracy A et al (2018) Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat Genet 50:1271–1281. https://doi.org/10.1038/s41588-018-0200-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128. https://doi.org/10.1126/science.aaa1348

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-Arnon L, Zimmer L, Gutzmer R, Satzger I, Loquai C et al (2019) Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med 25:1916–1927. https://doi.org/10.1038/s41591-019-0654-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G et al (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165:35–44. https://doi.org/10.1016/j.cell.2016.02.065

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, Hodi FS, Martin-Algarra S, Mandal R, Sharfman WH et al (2017) Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171(934–949):e916. https://doi.org/10.1016/j.cell.2017.09.028

Article  CAS  Google Scholar 

Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen MHG, Goldinger SM et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–211. https://doi.org/10.1126/science.aad0095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199. https://doi.org/10.1056/NEJMoa1406498

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28:1747–1756. https://doi.org/10.1101/gr.239244.118

Article  CAS  PubMed  PubMed Central  Google S

Comments (0)

No login
gif