Shribman S, Reid E, Crosby AH, Houlden H, Warner TT (2019) Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol 18(12):1136–1146
Article CAS PubMed Google Scholar
Meyyazhagan A, Orlacchio A (2022) Hereditary spastic paraplegia: an update. Int J Mol Sci 23(3):1697
Article CAS PubMed PubMed Central Google Scholar
Hedera P (2021) Hereditary spastic paraplegia overview. GeneReviews® [Internet] (Bookshelf ID: NBK1509)
Atorino L, Silvestri L, Koppen M, Cassina L, Ballabio A, Marconi R, Langer T, Casari G (2003) Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 163(4):777–787
Article CAS PubMed PubMed Central Google Scholar
Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P, De Michele G, Filla A, Cocozza S, Marconi R et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93(6):973–983
Article CAS PubMed Google Scholar
Kasher PR, De Vos KJ, Wharton SB, Manser C, Bennett EJ, Bingley M, Wood JD, Milner R, McDermott CJ, Miller CC et al (2009) Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem 110(1):34–44
Article CAS PubMed Google Scholar
Xia CH, Roberts EA, Her LS, Liu X, Williams DS, Cleveland DW, Goldstein LS (2003) Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J Cell Biol 161(1):55–66
Article CAS PubMed PubMed Central Google Scholar
Spörkel O, Uschkureit T, Büssow H, Stoffel W (2002) Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development. Glia 37(1):19–30
Zhao J, Matthies DS, Botzolakis EJ, Macdonald RL, Blakely RD, Hedera P (2008) Hereditary spastic paraplegia-associated mutations in the NIPA1 gene and its Caenorhabditis elegans homolog trigger neural degeneration in vitro and in vivo through a gain-of-function mechanism. J Neurosci 28(51):13938–13951
Article CAS PubMed PubMed Central Google Scholar
Ito D, Suzuki N (2009) Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain 132(Pt 1):8–15
Hirst J, Irving C, Borner GH (2013) Adaptor protein complexes AP-4 and AP-5: new players in endosomal trafficking and progressive spastic paraplegia. Traffic 14(2):153–164
Article CAS PubMed Google Scholar
Linder P, Jankowsky E (2011) From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12(8):505–516
Article CAS PubMed Google Scholar
Andrisani O, Liu Q, Kehn P, Leitner WW, Moon K, Vazquez-Maldonado N, Fingerman I, Gale M Jr (2022) Biological functions of DEAD/DEAH-box RNA helicases in health and disease. Nat Immunol 23(3):354–357
Article CAS PubMed PubMed Central Google Scholar
Salpietro V, Efthymiou S, Manole A, Maurya B, Wiethoff S, Ashokkumar B, Cutrupi MC, Dipasquale V, Manti S, Botia JA et al (2018) A loss-of-function homozygous mutation in DDX59 implicates a conserved DEAD-box RNA helicase in nervous system development and function. Hum Mutat 39(2):187–192
Article CAS PubMed Google Scholar
Kellaris G, Khan K, Baig SM, Tsai IC, Zamora FM, Ruggieri P, Natowicz MR, Katsanis N (2018) A hypomorphic inherited pathogenic variant in DDX3X causes male intellectual disability with additional neurodevelopmental and neurodegenerative features. Hum Genomics 12(1):11
Article PubMed PubMed Central Google Scholar
Zhan R, Yamamoto M, Ueki T, Yoshioka N, Tanaka K, Morisaki H, Seiwa C, Yamamoto Y, Kawano H, Tsuruo Y et al (2013) A DEAD-box RNA helicase Ddx54 protein in oligodendrocytes is indispensable for myelination in the central nervous system. J Neurosci Res 91(3):335–348
Article CAS PubMed Google Scholar
Park S, Lim Y, Lee D, Cho B, Bang YJ, Sung S, Kim HY, Kim DK, Lee YS, Song Y et al (2003) Identification and characterization of a novel cancer/testis antigen gene CAGE-1. Biochim Biophys Acta 1625(2):173–182
Article CAS PubMed Google Scholar
Kim H, Kim Y, Jeoung D (2017) DDX53 promotes cancer stem cell-like properties and autophagy. Mol Cells 40(1):54–65
Article CAS PubMed PubMed Central Google Scholar
Kim Y, Yeon M, Jeoung D (2017) DDX53 regulates cancer stem cell-like properties by binding to SOX-2. Mol Cells 40(5):322–330
Article CAS PubMed PubMed Central Google Scholar
Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466(7304):368–372
Article CAS PubMed PubMed Central Google Scholar
Faheem M, Deneault E, Alexandrova R, Rodrigues DC, Pellecchia G, Shum C, Zarrei M, Piekna A, Wei W, Howe JL et al (2023) Disruption of DDX53 coding sequence has limited impact on iPSC-derived human NGN2 neurons. BMC Med Genomics 16(1):5
Article CAS PubMed PubMed Central Google Scholar
Lou X, Shi H, Wen S, Li Y, Wei X, Xie J, Ma L, Yang Y, Fang H, Lyu J (2018) A Novel NDUFS3 mutation in a Chinese patient with severe Leigh syndrome. J Hum Genet 63(12):1269–1272
Article CAS PubMed Google Scholar
Lou X, Zhou X, Li H, Lu X, Bao X, Yang K, Liao X, Chen H, Fang H, Yang Y et al (2021) Biallelic mutations in ACACA cause a disruption in lipid homeostasis that is associated with global developmental delay, microcephaly, and dysmorphic facial features. Front Cell Dev Biol 9:618492
Article PubMed PubMed Central Google Scholar
Wittig I, Braun HP, Schägger H (2006) Blue native PAGE. Nat Protoc 1(1):418–428
Article CAS PubMed Google Scholar
Warejko JK, Tan W, Daga A, Schapiro D, Lawson JA, Shril S, Lovric S, Ashraf S, Rao J, Hermle T et al (2018) Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 13(1):53–62
Article CAS PubMed Google Scholar
Turner TN, Wilfert AB, Bakken TE, Bernier RA, Pepper MR, Zhang Z, Torene RI, Retterer K, Eichler EE (2019) Sex-based analysis of de novo variants in neurodevelopmental disorders. Am J Hum Genet 105(6):1274–1285
Article CAS PubMed PubMed Central Google Scholar
Scala M, Bradley CA, Howe JL, Trost B, Salazar NB, Shum C, Reuter MS, MacDonald JR, Ko SY, Frankland PW et al (2023) Genetic variants in DDX53 contribute to autism spectrum disorder associated with the Xp22.11 locus. medRxiv. https://doi.org/10.1101/2023.12.21.23300383
Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5(3):232–241
Article CAS PubMed Google Scholar
Singh RS, Arna AB, Dong H, Yadav M, Aggarwal A, Wu Y (2022) Structure-function analysis of DEAD-box helicase DDX43. Methods 204:286–299
Comments (0)