Deep Learning for Predicting Progression of Patellofemoral Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data, and Symptomatic Assessments

  SFX Search  Permissions and Reprints Abstract

Objective In this study, we propose a novel framework that utilizes deep learning and attention mechanisms to predict the radiographic progression of patellofemoral osteoarthritis (PFOA) over a period of 7 years.

Material and Methods This study included subjects (1,832 subjects, 3,276 knees) from the baseline of the Multicenter Osteoarthritis Study (MOST). Patellofemoral joint regions of interest were identified using an automated landmark detection tool (BoneFinder) on lateral knee X-rays. An end-to-end deep learning method was developed for predicting PFOA progression based on imaging data in a five-fold cross-validation setting. To evaluate the performance of the models, a set of baselines based on known risk factors were developed and analyzed using gradient boosting machine (GBM). Risk factors included age, sex, body mass index, and Western Ontario and McMaster Universities Arthritis Index score, and the radiographic osteoarthritis stage of the tibiofemoral joint (Kellgren and Lawrence [KL] score). Finally, to increase predictive power, we trained an ensemble model using both imaging and clinical data.

Results Among the individual models, the performance of our deep convolutional neural network attention model achieved the best performance with an area under the receiver operating characteristic curve (AUC) of 0.856 and average precision (AP) of 0.431, slightly outperforming the deep learning approach without attention (AUC = 0.832, AP = 0.4) and the best performing reference GBM model (AUC = 0.767, AP = 0.334). The inclusion of imaging data and clinical variables in an ensemble model allowed statistically more powerful prediction of PFOA progression (AUC = 0.865, AP = 0.447), although the clinical significance of this minor performance gain remains unknown. The spatial attention module improved the predictive performance of the backbone model, and the visual interpretation of attention maps focused on the joint space and the regions where osteophytes typically occur.

Conclusion This study demonstrated the potential of machine learning models to predict the progression of PFOA using imaging and clinical variables. These models could be used to identify patients who are at high risk of progression and prioritize them for new treatments. However, even though the accuracy of the models were excellent in this study using the MOST dataset, they should be still validated using external patient cohorts in the future.

Keywords patellofemoral osteoarthritis - deep learning - prediction of osteoarthritis progression - knee Authors' Contributions

N.B. originated the idea of the study, and performed the experiments and took major part in writing of the manuscript. S.S. supervised the project. All authors participated in producing the final manuscript draft and approved the final submitted version.


Publication History

Received: 12 August 2023

Accepted: 29 March 2024

Accepted Manuscript online:
11 April 2024

Article published online:
14 May 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

Comments (0)

No login
gif