Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660
Article CAS PubMed Google Scholar
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492
Volpe A, Panzarella T, Rendon RA, Haider MA, Kondylis FI, Jewett MA (2004) The natural history of incidentally detected small renal masses. Cancer 100(4):738–745. https://doi.org/10.1002/cncr.20025
Gill IS, Aron M, Gervais DA, Jewett MA (2010) Clinical practice: small renal mass. N Engl J Med 362(7):624–634. https://doi.org/10.1056/NEJMcp0910041
Article CAS PubMed Google Scholar
Bhandari A, Ibrahim M, Sharma C, Liong R, Gustafson S, Prior M (2021) CT-based radiomics for differentiating renal tumours: a systematic review. Abdom Radiol 46(5):2052–2063. https://doi.org/10.1007/s00261-020-02832-9
Takagi T, Kondo T, Tanabe K (2011) Impact of the tumor enhancement pattern in computed tomography for the differential diagnosis of renal cell carcinoma and benign renal tumor. Int J Urol 18(12):866–867. https://doi.org/10.1111/j.1442-2042.2011.02872.x
Sheir KZ, El-Azab M, Mosbah A, El-Baz M, Shaaban AA (2005) Differentiation of renal cell carcinoma subtypes by multislice computerized tomography. J Urol 174(2):451–455. https://doi.org/10.1097/01.ju.0000165341.08396.a9. (discussion 455)
Zhang YY, Luo S, Liu Y, Xu RT (2013) Angiomyolipoma with minimal fat: differentiation from papillary renal cell carcinoma by helical CT. Clin Radiol 68(4):365–370. https://doi.org/10.1016/j.crad.2012.08.028
Luo S, Wei R, Lu S, Lai S, Wu J, Wu Z, Pang X, Wei X, Jiang X, Zhen X, Yang R (2022) Fuhrman nuclear grade prediction of clear cell renal cell carcinoma: influence of volume of interest delineation strategies on machine learning-based dynamic enhanced CT radiomics analysis. Eur Radiol 32(4):2340–2350. https://doi.org/10.1007/s00330-021-08322-w
Miskin N, Qin L, Silverman SG, Shinagare AB (2023) Differentiating benign from malignant cystic renal masses: a feasibility study of computed tomography texture-based machine learning algorithms. J Comput Assist Tomogr 47(3):376–381. https://doi.org/10.1097/rct.0000000000001433
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B (2020) Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 11(1):91. https://doi.org/10.1186/s13244-020-00887-2
Article PubMed PubMed Central Google Scholar
Xu HL, Gong TT, Liu FH, Chen HY, Xiao Q, Hou Y, Huang Y, Sun HZ, Shi Y, Gao S, Lou Y, Chang Q, Zhao YH, Gao QL, Wu QJ (2022) Artificial intelligence performance in image-based ovarian cancer identification: a systematic review and meta-analysis. EClinicalMedicine 53:101662. https://doi.org/10.1016/j.eclinm.2022.101662
Article PubMed PubMed Central Google Scholar
Gharaibeh M, Alzu’bi D, Abdullah M, Hmeidi I, Al Nasar MR, Abualigah L, Gandomi AH (2022) Radiology imaging scans for early diagnosis of kidney tumors: a review of data analytics-based machine learning and deep learning approaches. Big Data Cogn Comput 6(1):29
Kocak B, Kus EA, Yardimci AH, Bektas CT, Kilickesmez O (2020) Machine learning in radiomic renal mass characterization: fundamentals, applications, challenges, and future directions. AJR Am J Roentgenol 215(4):920–928. https://doi.org/10.2214/ajr.19.22608
de Leon AD, Kapur P, Pedrosa I (2019) Radiomics in kidney cancer: MR imaging. Magn Reson Imaging Clin N Am 27(1):1–13. https://doi.org/10.1016/j.mric.2018.08.005
Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577. https://doi.org/10.1148/radiol.2015151169
Krishna S, Murray CA, McInnes MD, Chatelain R, Siddaiah M, Al-Dandan O, Narayanasamy S, Schieda N (2017) CT imaging of solid renal masses: pitfalls and solutions. Clin Radiol 72(9):708–721. https://doi.org/10.1016/j.crad.2017.05.003
Article CAS PubMed Google Scholar
Fleuren LM, Thoral P, Shillan D, Ercole A, Elbers PWG (2020) Machine learning in intensive care medicine: ready for take-off? Intensive Care Med 46(7):1486–1488. https://doi.org/10.1007/s00134-020-06045-y
Fleuren LM, Klausch TLT, Zwager CL, Schoonmade LJ, Guo T, Roggeveen LF, Swart EL, Girbes ARJ, Thoral P, Ercole A, Hoogendoorn M, Elbers PWG (2020) Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med 46(3):383–400. https://doi.org/10.1007/s00134-019-05872-y
Article PubMed PubMed Central Google Scholar
Zhou T, Guan J, Feng B, Xue H, Cui J, Kuang Q, Chen Y, Xu K, Lin F, Cui E, Long W (2023) Distinguishing common renal cell carcinomas from benign renal tumors based on machine learning: comparing various CT imaging phases, slices, tumor sizes, and ROI segmentation strategies. Eur Radiol. https://doi.org/10.1007/s00330-022-09384-0
Article PubMed PubMed Central Google Scholar
Lubner MG (2020) Radiomics and artificial intelligence for renal mass characterization. Radiol Clin North Am 58(5):995–1008. https://doi.org/10.1016/j.rcl.2020.06.001
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71
Article PubMed PubMed Central Google Scholar
Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, Reitsma JB, Collins GS (2014) Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med 11(10):e1001744. https://doi.org/10.1371/journal.pmed.1001744
Article PubMed PubMed Central Google Scholar
Sounderajah V, Ashrafian H, Rose S, Shah NH, Ghassemi M, Golub R, Kahn CE Jr, Esteva A, Karthikesalingam A, Mateen B, Webster D, Milea D, Ting D, Treanor D, Cushnan D, King D, McPherson D, Glocker B, Greaves F, Harling L, Ordish J, Cohen JF, Deeks J, Leeflang M, Diamond M, McInnes MDF, McCradden M, Abràmoff MD, Normahani P, Markar SR, Chang S, Liu X, Mallett S, Shetty S, Denniston A, Collins GS, Moher D, Whiting P, Bossuyt PM, Darzi A (2021) A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med 27(10):1663–1665. https://doi.org/10.1038/s41591-021-01517-0
Article CAS PubMed Google Scholar
Kocak B, Durmaz ES, Kaya OK, Kilickesmez O (2020) Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas. Acta Radiol 61(6):856–864. https://doi.org/10.1177/0284185119881742
Schieda N, Lim RS, Krishna S, McInnes MDF, Flood TA, Thornhill RE (2018) Diagnostic accuracy of unenhanced CT analysis to differentiate low-grade from high-grade chromophobe renal cell carcinoma. AJR Am J Roentgenol 210(5):1079–1087. https://doi.org/10.2214/ajr.17.18874
Yap FY, Varghese BA, Cen SY, Hwang DH, Lei X, Desai B, Lau C, Yang LL, Fullenkamp AJ, Hajian S, Rivas M, Gupta MN, Quinn BD, Aron M, Desai MM, Aron M, Oberai AA, Gill IS, Duddalwar VA (2021) Shape and texture-based radiomics signature on CT effectively discriminates benign from malignant renal masses. Eur Radiol 31(2):1011–1021. https://doi.org/10.1007/s00330-020-07158-0
Varghese B, Cen S, Zahoor H, Siddiqui I, Aron M, Sali A, Rhie S, Lei X, Rivas M, Liu D, Hwang D, Quinn D, Desai M, Vaishampayan U, Gill I, Duddalwar V (2022) Feasibility of using CT radiomic signatures for predicting CD8-T cell infiltration and PD-L1 expression in renal cell carcinoma. Eur J Radiol Open 9:100440. https://doi.org/10.1016/j.ejro.2022.100440
Article PubMed PubMed Central Google Scholar
Demirjian NL, Varghese BA, Cen SY, Hwang DH, Aron M, Siddiqui I, Fields BKK, Lei X, Yap FY, Rivas M, Reddy SS, Zahoor H, Liu DH, Desai M, Rhie SK, Gill IS, Duddalwar V (2022) CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma. Eur Radiol 32(4):2552–2563. https://doi.org/10.1007/s00330-021-08344-4
Nassiri N, Maas M, Cacciamani G, Varghese B, Hwang D, Lei X, Aron M, Desai M, Oberai AA, Cen SY, Gill IS, Duddalwar VA (2022) A radiomic-based machine learning algorithm to reliably differentiate benign renal masses from renal cell carcinoma. Eur Urol Focus 8(4):988–994. https://doi.org/10.1016/j.euf.2021.09.004
Kocak B, Ates E, Durmaz ES, Ulusan MB, Kilickesmez O (2019) Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Eur Radiol 29(9):4765–4775. https://doi.org/10.1007/s00330-019-6003-8
Yang L, Gao L, Arefan D, Tan Y, Dan H, Zhang J (2022) A CT-based radiomics model for predicting renal capsule invasion in renal cell carcinoma. BMC Med Imaging 22(1):15. https://doi.org/10.1186/s12880-022-00741-5
Article PubMed PubMed Central Google Scholar
Kocak B, Durmaz ES, Ates E, Kaya OK, Kilickesmez O (2019) Unenhanced CT texture analysis of clear cell renal cell carcinomas: a machine learning-based study for predicting histopathologic nuclear grade. AJR Am J Roentgenol 212(6):W132-w139. https://doi.org/10.2214/ajr.18.20742
Comments (0)