Convoluted Neural Network for Detection of Clinically Significant Prostate Cancer on 68 Ga PSMA PET/CT Delayed Imaging by Analyzing Radiomic Features

Culp MBB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol. 2020;77:38–52.

Article  PubMed  Google Scholar 

Hariharan K, Padmanabha V. Demography and disease characteristics of prostate cancer in India. Indian J Urol. 2016;32:103–8.

Article  PubMed  PubMed Central  Google Scholar 

Becopoulos T. Clinically significant and non significant prostate cancer an ongoing question. Acta Chir Iugosl. 2005;52:27–9.

Article  CAS  PubMed  Google Scholar 

Osmany S, Zaheer S, Bartel TB, Johnston M, Peh WM, Barmaky S, Jadvar H. Gallium-68-labeled prostate-specific membrane antigen-11 PET/CT of prostate and nonprostate cancers. AJR Am J Roentgenol. 2019;213:286–99.

Article  PubMed  PubMed Central  Google Scholar 

Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. 68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2017;44:1014–24.

Article  PubMed  Google Scholar 

Kumar R, Singh SK, Mittal BR, Vadi SK, Kakkar N, Singh H, et al. Safety and diagnostic yield of 68Ga prostate-specific membrane antigen PET/CT guided robotic-assisted transgluteal prostatic biopsy. Radiology. 2022;303:392–8.

Article  PubMed  Google Scholar 

Cuocolo R, Cipullo MB, Stanzione A, Ugga L, Romeo V, Radice L, et al. Machine learning applications in prostate cancer magnetic resonance imaging. Eur Radiol Exp. 2019;3:35.

Article  PubMed  PubMed Central  Google Scholar 

Yoo S, Gujrathi I, Haider MA, Khalvati F. Prostate cancer detection using deep convolutional neural networks. Sci Rep. 2019;9:19518.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44:151–65.

Article  PubMed  Google Scholar 

Zamboglou C, Carles M, Fechter T, Kiefer S, Reichel K, Fassbender TF, et al. Radiomic features from PSMA PET for non-invasive intraprostatic tumor discrimination and characterization in patients with intermediate- and high-risk prostate cancer - a comparison study with histology reference. Theranostics. 2019;9:2595–605.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009;42:1162–71.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Sa R, Zhao HG, Dai YY, Guan F. The role of dual time point PET/CT for distinguishing malignant from benign focal 18F-FDG uptake duodenal lesions. Medicine (Baltimore). 2018;97: e12521.

Article  PubMed  Google Scholar 

Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, et al. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018;78:4786–9.

Article  CAS  PubMed  Google Scholar 

MATLAB. 9.9.0.1467703 (R2010b). Natick, Massachusetts: The MathWorks Inc. 2020.

Yao S, Jiang H, Song B. Radiomics in prostate cancer: basic concepts and current state-of-the-art. Chin J Acad Radiol. 2020;2:47–55.

Article  Google Scholar 

Chaddad A, Kucharczyk MJ, Niazi T. Multimodal radiomic features for the predicting Gleason Score of prostate cancer. Cancer (Basel). 2018;10:249.

Article  Google Scholar 

Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep. 2017;7:15415.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Lin H, Si J, Abousleman G. P. Region-of-interest detection and its application to image segmentation and compression. 2007 International Conference on Integration of Knowledge Intensive Multi-Agent Systems, KIMAS; 2007:306–11.

Mehrtash A, Sedghi A, Ghafoorian M, Taghipour M, Tempany CM, Wells WM 3rd, et al. Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks. Proc SPIE Int Soc Opt Eng. 2017;10134:101342A.

PubMed  PubMed Central  Google Scholar 

Syafeeza AR, Khalil-Hani M, Imran H, Ibrahim MM, Wong YC. Generalizing convolutional neural networks for pattern recognition tasks. ARPN J Eng Appl Sci. 2015;10:5298–308.

Google Scholar 

Geman S, Bienenstock E, Doursat R. Neural networks and the bias/variance dilemma. Neural Comput. 1992;4:1–58.

Article  Google Scholar 

Czernin J, Allen-Auerbach M, Nathanson D, Herrmann K. PET/CT in oncology: current status and perspectives. Curr Radiol Rep. 2013;1:177–90.

Article  PubMed  PubMed Central  Google Scholar 

Gao J, Zhang C, Zhang Q, Fu Y, Zhao X, Chen M, Zhang B, et al. Diagnostic performance of 68Ga-PSMA PET/CT for identification of aggressive cribriform morphology in prostate cancer with whole-mount sections. Eur J Nucl Med Mol Imaging. 2019;46:1531–41.

Article  CAS  PubMed  Google Scholar 

Bailey J, Piert M. Performance of 68Ga-PSMA PET/CT for prostate cancer management at initial staging and time of biochemical recurrence. Curr Urol Rep. 2017;18:84–90.

Article  PubMed  Google Scholar 

Budäus L, Leyh-Bannurah SR, Salomon G, Michl U, Heinzer H, Huland H, et al. Initial experience of 68Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol. 2016;69:393–6.

Article  PubMed  Google Scholar 

Kumar R, Mittal BR, Bhattacharya A, Singh H, Bal A, Vadi SK, et al. Diagnostic performance of real-time robotic arm-assisted 18 F-FDG PET/CT-guided percutaneous biopsy in metabolically active abdominal and pelvic lesions. Eur J Nucl Med Mol Imaging. 2019;46:838–47.

Article  CAS  PubMed  Google Scholar 

Kumar R, Mittal BR, Bhattacharya A, Vadi SK, Singh H, Bal A, et al. Positron emission tomography/computed tomography guided percutaneous biopsies of Ga-68 avid lesions using an automated robotic arm. Diagn Interv Imaging. 2020;101:157–67.

Article  CAS  PubMed  Google Scholar 

Huang YE, Chen CF, Huang YJ, Konda SD, Appelbaum DE, Pu Y. Interobserver variability among measurements of the maximum and mean standardized uptake values on 18F-FDG PET/CT and measurements of tumor size on diagnostic CT in patients with pulmonary tumors. Acta Radiol. 2010;51:782–8.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif