Apelblat, A., Korin, E., Manzurola, E. (2013). Thermodynamic properties of aqueous solutions with citrate ions. Compressibility studies in aqueous solutions of citric acid. J. Chem. Thermodyn. 64, 14–21. http://dx.doi.org/10.1016/j.jct.2013.04.017
Rodnikova, M.N., Agayan, G.M., Balabaev, N.K. (2019). Description of the spatial networks of hydrogen bonds in liquids by topological methods. J. Mol. Liq. 283. 374–379. https://doi.org/10.1016/j.molliq.2019.03.090
Kutus, B., Dudás, C., Friesen, S., Peintler, G., Pálinkó, I., Sipos, P., Buchner, R. (2020). Equilibria and Dynamics of Sodium Citrate Aqueous Solutions: The Hydration of Citrate and Formation of the Na3Cit0 Ion Aggregate. J. Phys. Chem. B. 124(43). 9604–9614. https://doi.org/10.1021/acs.jpcb.0c06377
Lounev, I.V., Rodnikova, M.N., Razumova, A.B., Melnikova T.A. (2023). Mobility of aliphatic amino-alcohols molecules in aqueous solutions investigated by broadband dielectric spectroscopy. J. Mol. Liq. 387, 122674. https://doi.org/10.1016/j.molliq.2023.122674
Legkov, S.A., Bondarenko, G.N., Kostina, J.V., Novitsky, E.G., Bazhenov, S.D., Volkov, A.V., Volkov, V.V. (2023). Structural Features of Monoethanolamine Aqueous Solutions with Various Compositions: A Combined Experimental and Theoretical Study Using Vibrational Spectroscopy. Mol. 28(1), 403. https://doi.org/10.3390/molecules28010403
Patyar, P., Kaur, G. (2022). Molecular interactions of glycine and L-alanine + citrate buffer solutions at different temperatures: Volumetric, viscometric, and FTIR approach. Indian J. Chem. 61(5), 482–495. https://doi.org/10.56042/ijc.v61i5.63636
Apelblat, A. (2014). Citric acid. Springer Cham. https://doi.org/10.1007/978-3-319-11233-6
Del Pino, I.G., Constanso, I., Mourín, L.V., Safont, C.B., Vázquez P.R. (2013). Citric/citrate buffer: an effective antiglycolytic agent. Clinical Chem. Lab. Med. 51(10), 194–204. https://doi.org/10.1515/cclm-2012-0735
Sun, Z., Zhou, Y., Jia, S., Wang, Y., Jiang, D., Zhang, L. (2021). Enhanced SO2 Absorption Capacity of Sodium Citrate Using Sodium Humate. Catalysts. 11(7), 865. https://doi.org/10.3390/catal11070865
Ennan, A.A.-A., Khoma, R.E., Dlubovskii, R.M., Zakharenko, Yu.S., Bienkovska, T.S., Knysh, I.M. (2022). [Mono- and bifunctional impregnated fiber chemosorbents for respiratory purpose]. Visn. Odes. nac. univ., Him. 27(1), 5–30. (in Ukrainian). https://doi.org/10.18524/2304-0947.2022.1(81).248297
Bienkovska, T., Khoma, R., Vatral, O., Dlubovskii, R.M., Vodzinskii, S.V., Menchuk, V.V. (2022). Impregnated fibrous chemisorbents for the colorimetric detection of ammonia. Ukr. Chem. J., 88(12), 175–188. https://doi.org/10.33609/2708-129X.88.12.2022.175-188
Wang, J., Huang, W., Xu, H., Cui, P., Qu, Z., Yan, N. (2023). High-efficient cyclic absorption of sulfur dioxide in Na-Mg-Ci3- compound system for wet flue gas desulfurization. Sep. Purif. Technol. 320, 124138
Fiume, M.M., Heldreth, B.A., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Shank, R.C., Slaga, T.J., Snyder, P.W., Andersen, F.A. (2015). Safety Assessment of Ethanolamine and Ethanolamine Salts as Used in Cosmetics. Int. J. Toxicol. 34(2), 84S–98S. https://doi.org/10.1177/1091581815596439
Baudot, A., Cacela, C., Daurte, M.L., Fausto, R. (2002). Thermal study of simple amino-alcohol solutions. Cryobiol. 44(2), 150–160. https://doi.org/10.1016/s0011-2240(02)00017-2
Yasui, K., Uegaki, M., Shiraki, K., Ishimizu, T. (2010). Enhanced solubilization of membrane proteins by alkylamines and polyamines. Protein Sci. 19, 486–493. https://doi.org/10.1002/pro.326
Khoma, R.E., Ennan, A.A., Dlubovskii, R.M., Ishkov, Yu.V., Bienkovska, T.S., Rakhlitskaya, E.M. (2021). Equilibrium Processes in AlkNHCH2SO3H – NH2CH2CH2OH – H2O Solutions. Russ. J. Gen. Chem. 91(4), 583–592. https://doi.org/10.1134/s1070363221040010
Orzechowski, K., Pajdowska, M., Przybylski, J., Gliński, J., Kołodziej, H.A. (2000). Dielectric, acoustic, densimetric and viscosimetric investigations of the tributylamine + propionic acid system. Phys. Chem. Chem. Phys. 2(20), 4676–4681. https://doi.org/10.1039/B005434H
Burakowski, A., Gliński, J. (2014). Ultrasonic and Densimetric Titration Applied for Acid-base Reactions. Anal. Sci. 30(8), 793–798. https://doi.org/10.2116/analsci.30.793
Ziemer, S.P., Niederhauser, T.L., Merkley, E.D., Price, J.L., Sorenson, E.C., McRae, B.R., Patterson, B.A., Origlia-Luster, M.L., Woolley E.M. (2006). Thermodynamics of proton dissociations from aqueous glycine at temperatures from 278.15 to 393.15 K, molalities from 0 to 1.0 molkg−1, and at the pressure 0.35 MPa: Apparent molar heat capacities and apparent molar volumes of glycine, glycinium chloride, and sodium glycinate. J. Chem. Thermodyn. 38(4), 467–483. https://doi.org/10.1016/j.jct.2005.06.017
Khoma, R.E., Ennan, A.A.-A., Dlubovskii, R.M., Bienkovskaya, T.S. (2021). [Buffer solutions based on taurine]. Visn. Odes. nac. univ., Him. 26(1), 48-64. (in Ukrainian). https://doi.org/10.18524/2304–0947.2021.1(77).226146
de Cássia da Silva, R., Cavalheiro, É.T.G. (2015). Synthesis, characterization, and thermal analysis of alginate and monoethanolamine product. J. Therm. Anal. Calorim. 120(1), 855–862. https://doi.org/10.1007/s10973-014-3948-3
Bone, D.P., Shannon, E.L. (1991). Effects of Order of Mixing and Solute Interactions on the “Water Activity” of Concentrated Solutions. In: Levine H., Slade L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_18
Khoma, R.E., Bіenkovska, T.S., Osadchiy, L.T., Ishkov, Yu.V. (2023). [Citric acid – sodium citrate – water solutions acid-base and electrochemical behavior]. Visn. Odes. nac. univ., Him. 28(2), 33–42. (in Ukrainian). https://doi.org/10.18524/2304-0947.2023.2(85).286600
Khoma, R.E. (2019). Acid-base interaction and sulfooxidation at chemosorption of sulfur dioxide by alkylamines aqueous solutions. Abstract of Doctor’s degree dissertation. Kyiv. (in Ukrainian)
Zhang H., Lu C.-T., Lu J.-G., Gao L., Hai G.-P., Tang Y.-Q., Chen L.-X., Hua A.-C., Wang L.-J. (2014). Density, Viscosity and Excess Molar Volume of the Aqueous Ionic Liquid Tris(monoethanolamine) Citrate at 293.15–323.15 K. J. Solution Chem. 43, 2117–2132. https://doi.org/10.1007/s10953-014-0270-4
Comments (0)