Busschaert, N., Caltagirone, C., Van Rossom, W. & Gale, P. A. Applications of supramolecular anion recognition. Chem. Rev. 115, 8038–8155 (2015).
Article CAS PubMed Google Scholar
Diauudin, F. N. et al. A review of current advances in the detection of organophosphorus chemical warfare agents based biosensor approaches. Sens. Bio-Sens. Res. 26, 100305–100313 (2019).
Li, D., Seaman, J. C., Kaplan, D. I., Heald, S. M. & Sun, C. Pertechnetate (TcO4−) sequestration from groundwater by cost-effective organoclays and granular activated carbon under oxic environmental conditions. J. Chem. Eng. https://doi.org/10.1016/j.cej.2018.11.146 (2019).
Ji, X. et al. Removal of anions from aqueous media by means of a thermoresponsive calix[4]pyrrole amphiphilic polymer. Chem. Eur. J. 24, 15791–15795 (2018).
Article CAS PubMed Google Scholar
Zhang, Q. et al. Anion extractants constructed by macrocycle-based anion recognition. J. Mater. Chem. A 10, 15297–15308 (2022).
Busschaert, N. & Gale, P. A. Small-molecule lipid-bilayer anion transporters for biological applications. Angew. Chem. Int. Ed. Engl. 52, 1374–1382 (2013).
Article CAS PubMed Google Scholar
Ratjen, F. et al. Cystic fibrosis. Nat. Rev. Dis. Prim. 1, 15010 (2015).
Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).
Article CAS PubMed ADS Google Scholar
Macreadie, L. K. et al. Progress in anion receptor chemistry. Chem 8, 46–118 (2022).
Zhao, Y. et al. The emergence of anion−π catalysis. Acc. Chem. Res. 51, 2255–2263 (2018).
Article CAS PubMed Google Scholar
Kubik, S. Anion recognition in water. Chem. Soc. Rev. 39, 3648–3663 (2010).
Article CAS PubMed Google Scholar
Goldman, S. & Bates, R. G. Calculation of thermodynamic functions for ionic hydration. J. Am. Chem. Soc. 94, 1476–1484 (1972).
Brown, A. & Beer, P. D. Halogen bonding anion recognition. Chem. Commun. 52, 8645–8658 (2016).
Morita, T., Westh, P., Nishikawa, K. & Koga, Y. How much weaker are the effects of cations than those of anions? The effects of K+ and Cs+ on the molecular organization of liquid H2O. J. Phys. Chem. B 118, 8744–8749 (2014).
Article CAS PubMed Google Scholar
Langton, M. J., Serpell, C. J. & Beer, P. D. Anion recognition in water: recent advances from a supramolecular and macromolecular perspective. Angew. Chem. Int. Ed. Engl. 55, 1974–1987 (2016).
Article CAS PubMed Google Scholar
Pedersen, C. J. The discovery of crown ethers (Noble Lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988).
Dietrich, B., Lehn, J. M. & Sauvage, J. P. Diaza-polyoxa-macrocycles et macrobicycles. Tetrahedron Lett. 10, 2885–2888 (1969).
Lehn, J.-M. Supramolecular chemistry — scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).
Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988).
Pancholi, J. & Beer, P. D. Halogen bonding motifs for anion recognition. Coord. Chem. Rev. 416, 213281 (2020).
Molina, P., Zapata, F. & Caballero, A. Anion recognition strategies based on combined noncovalent interactions. Chem. Rev. 117, 9907–9972 (2017).
Article CAS PubMed Google Scholar
Cram, D. J. Preorganization — from solvents to spherands. Angew. Chem. Int. Ed. Engl. 25, 1039–1057 (1986).
Lim, J. Y. C. & Beer, P. D. Sigma-hole interactions in anion recognition. Chem 4, 731–783 (2018).
Mercer, D. J. & Loeb, S. J. Metal-based anion receptors: an application of second-sphere coordination. Chem. Soc. Rev. 39, 3612–3620 (2010).
Article CAS PubMed Google Scholar
Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. Anion-π interactions. Chem. Soc. Rev. 37, 68–83 (2008).
Article CAS PubMed Google Scholar
Smithrud, D. B. et al. Solvent effects in molecular recognition. Pure Appl. Chem. 62, 2227–2236 (1990).
Schneider, H.-J. Binding mechanisms in supramolecular complexes. Angew. Chem. Int. Ed. Engl. 48, 3924–3977 (2009).
Article CAS PubMed Google Scholar
Rekharsky, M. & Inoue, Y. in Solvation Effects in Supramolecular Recognition in Supramolecular Chemistry: From Molecules to Nanomaterials (eds Gale, P. A. & Steed, J. W.) (Wiley, 2012).
Sokkalingam, P., Shraberg, J., Rick, S. W. & Gibb, B. C. Binding hydrated anions with hydrophobic pockets. J. Am. Chem. Soc. 138, 48–51 (2016).
Article CAS PubMed Google Scholar
Liu, Y., Parks, F. C., Sheetz, E. G., Chen, C.-H. & Flood, A. H. Polarity-tolerant chloride binding in foldamer capsules by programmed solvent-exclusion. J. Am. Chem. Soc. 143, 3191–3204 (2021). Describes the ability of a foldameric host to exclude solvent from its binding cavity, which enabled Cl−binding affinities to persist across a broad solvent dielectric range.
Article CAS PubMed Google Scholar
Bąk, K. M., Patrick, S. C., Li, X., Beer, P. D. & Davis, J. J. Engineered binding microenvironments in halogen bonding polymers for enhanced anion sensing. Angew. Chem. Int. Ed. Engl. 62, e202300867 (2023).
Hofmeister, F. Zur lehre von der wirkung der salze. Arch. Exp. Pathol. Pharmakol. 24, 247–260 (1888).
Gibb, B. C. Supramolecular assembly and binding in aqueous solution: useful tips regarding the Hofmeister and hydrophobic effects. Isr. J. Chem. 51, 798–806 (2011).
Kunz, W., Lo Nostro, P. & Ninham, B. W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. https://doi.org/10.1016/j.cocis.2004.05.004 (2004).
Jungwirth, P. & Cremer, P. S. Beyond Hofmeister. Nat. Chem. 6, 261–263 (2014).
Article CAS PubMed Google Scholar
Carnegie, R. S., Gibb, C. L. D. & Gibb, B. C. Anion complexation and the Hofmeister effect. Angew. Chem. Int. Ed. Engl. 53, 11498–11500 (2014).
Article CAS PubMed PubMed Central Google Scholar
Pike, S. J., Hutchinson, J. J. & Hunter, C. A. H-Bond acceptor parameters for anions. J. Am. Chem. Soc. 139, 6700–6706 (2017).
Article CAS PubMed Google Scholar
Rembert, K. B., Okur, H. I., Hilty, C. & Cremer, P. S. An NH moiety is not required for anion binding to amides in aqueous solution. Langmuir 31, 3459–3464 (2015).
Article CAS PubMed Google Scholar
Jordan, J. H., Gibb, C. L. D., Wishard, A., Pham, T. & Gibb, B. C. Ion–hydrocarbon and/or ion–ion interactions: direct and reverse Hofmeister effects in a synthetic host. J. Am. Chem. Soc. 140, 4092–4099 (2018).
Article CAS PubMed PubMed Central Google Scholar
Lim, J. Y. C., Bunchuay, T. & Beer, P. D. Strong and selective halide anion binding by neutral halogen-bonding [2]rotaxanes in wet organic solvents. Chem. Eur. J. 23, 4700–4707 (2017).
Article CAS PubMed Google Scholar
Yao, W., Wang, K., Wu, A., Reed, W. F. & Gibb, B. C. Anion binding to ubiquitin and its relevance to the Hofmeister effects. Chem. Sci. 12, 320–330 (2021).
Docker, A. et al. Anti-Hofmeister anion selectivity via a mechanical bond effect in neutral halogen-bonding [2]rotaxanes. Angew. Chem. Int. Ed. Engl. 61, e202214523 (2022).
Article CAS PubMed PubMed Central Google Scholar
Bruns, C. J. & Stoddart, J. F. in The Nature of the Mechanical Bond 1–54 (Wiley, 2016).
Wilmore, J. T. & Beer, P. D. Exploiting the mechanical bond effect for enhanced molecular recognition and sensing. Adv. Mater. https://doi.org/10.1002/adma.202309098 (2024).
Giles, M. D., Liu, S., Emanuel, R. L., Gibb, B. C. & Grayson, S. M. Dendronized supramolecular nanocapsules: pH independent, water-soluble, deep-cavity cavitands assemble via the hydrophobic effect. J. Am. Chem. Soc. 130, 14430–14
Comments (0)