Solvent effects in anion recognition

Busschaert, N., Caltagirone, C., Van Rossom, W. & Gale, P. A. Applications of supramolecular anion recognition. Chem. Rev. 115, 8038–8155 (2015).

Article  CAS  PubMed  Google Scholar 

Diauudin, F. N. et al. A review of current advances in the detection of organophosphorus chemical warfare agents based biosensor approaches. Sens. Bio-Sens. Res. 26, 100305–100313 (2019).

Article  Google Scholar 

Li, D., Seaman, J. C., Kaplan, D. I., Heald, S. M. & Sun, C. Pertechnetate (TcO4−) sequestration from groundwater by cost-effective organoclays and granular activated carbon under oxic environmental conditions. J. Chem. Eng. https://doi.org/10.1016/j.cej.2018.11.146 (2019).

Article  Google Scholar 

Ji, X. et al. Removal of anions from aqueous media by means of a thermoresponsive calix[4]pyrrole amphiphilic polymer. Chem. Eur. J. 24, 15791–15795 (2018).

Article  CAS  PubMed  Google Scholar 

Zhang, Q. et al. Anion extractants constructed by macrocycle-based anion recognition. J. Mater. Chem. A 10, 15297–15308 (2022).

Article  CAS  Google Scholar 

Busschaert, N. & Gale, P. A. Small-molecule lipid-bilayer anion transporters for biological applications. Angew. Chem. Int. Ed. Engl. 52, 1374–1382 (2013).

Article  CAS  PubMed  Google Scholar 

Ratjen, F. et al. Cystic fibrosis. Nat. Rev. Dis. Prim. 1, 15010 (2015).

Article  PubMed  Google Scholar 

Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

Article  CAS  PubMed  ADS  Google Scholar 

Macreadie, L. K. et al. Progress in anion receptor chemistry. Chem 8, 46–118 (2022).

Article  CAS  Google Scholar 

Zhao, Y. et al. The emergence of anion−π catalysis. Acc. Chem. Res. 51, 2255–2263 (2018).

Article  CAS  PubMed  Google Scholar 

Kubik, S. Anion recognition in water. Chem. Soc. Rev. 39, 3648–3663 (2010).

Article  CAS  PubMed  Google Scholar 

Goldman, S. & Bates, R. G. Calculation of thermodynamic functions for ionic hydration. J. Am. Chem. Soc. 94, 1476–1484 (1972).

Article  CAS  Google Scholar 

Brown, A. & Beer, P. D. Halogen bonding anion recognition. Chem. Commun. 52, 8645–8658 (2016).

Article  CAS  Google Scholar 

Morita, T., Westh, P., Nishikawa, K. & Koga, Y. How much weaker are the effects of cations than those of anions? The effects of K+ and Cs+ on the molecular organization of liquid H2O. J. Phys. Chem. B 118, 8744–8749 (2014).

Article  CAS  PubMed  Google Scholar 

Langton, M. J., Serpell, C. J. & Beer, P. D. Anion recognition in water: recent advances from a supramolecular and macromolecular perspective. Angew. Chem. Int. Ed. Engl. 55, 1974–1987 (2016).

Article  CAS  PubMed  Google Scholar 

Pedersen, C. J. The discovery of crown ethers (Noble Lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988).

Article  Google Scholar 

Dietrich, B., Lehn, J. M. & Sauvage, J. P. Diaza-polyoxa-macrocycles et macrobicycles. Tetrahedron Lett. 10, 2885–2888 (1969).

Article  Google Scholar 

Lehn, J.-M. Supramolecular chemistry — scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

Article  Google Scholar 

Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988).

Article  Google Scholar 

Pancholi, J. & Beer, P. D. Halogen bonding motifs for anion recognition. Coord. Chem. Rev. 416, 213281 (2020).

Article  CAS  Google Scholar 

Molina, P., Zapata, F. & Caballero, A. Anion recognition strategies based on combined noncovalent interactions. Chem. Rev. 117, 9907–9972 (2017).

Article  CAS  PubMed  Google Scholar 

Cram, D. J. Preorganization — from solvents to spherands. Angew. Chem. Int. Ed. Engl. 25, 1039–1057 (1986).

Article  Google Scholar 

Lim, J. Y. C. & Beer, P. D. Sigma-hole interactions in anion recognition. Chem 4, 731–783 (2018).

Article  CAS  Google Scholar 

Mercer, D. J. & Loeb, S. J. Metal-based anion receptors: an application of second-sphere coordination. Chem. Soc. Rev. 39, 3612–3620 (2010).

Article  CAS  PubMed  Google Scholar 

Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. Anion-π interactions. Chem. Soc. Rev. 37, 68–83 (2008).

Article  CAS  PubMed  Google Scholar 

Smithrud, D. B. et al. Solvent effects in molecular recognition. Pure Appl. Chem. 62, 2227–2236 (1990).

Article  CAS  Google Scholar 

Schneider, H.-J. Binding mechanisms in supramolecular complexes. Angew. Chem. Int. Ed. Engl. 48, 3924–3977 (2009).

Article  CAS  PubMed  Google Scholar 

Rekharsky, M. & Inoue, Y. in Solvation Effects in Supramolecular Recognition in Supramolecular Chemistry: From Molecules to Nanomaterials (eds Gale, P. A. & Steed, J. W.) (Wiley, 2012).

Sokkalingam, P., Shraberg, J., Rick, S. W. & Gibb, B. C. Binding hydrated anions with hydrophobic pockets. J. Am. Chem. Soc. 138, 48–51 (2016).

Article  CAS  PubMed  Google Scholar 

Liu, Y., Parks, F. C., Sheetz, E. G., Chen, C.-H. & Flood, A. H. Polarity-tolerant chloride binding in foldamer capsules by programmed solvent-exclusion. J. Am. Chem. Soc. 143, 3191–3204 (2021). Describes the ability of a foldameric host to exclude solvent from its binding cavity, which enabled Clbinding affinities to persist across a broad solvent dielectric range.

Article  CAS  PubMed  Google Scholar 

Bąk, K. M., Patrick, S. C., Li, X., Beer, P. D. & Davis, J. J. Engineered binding microenvironments in halogen bonding polymers for enhanced anion sensing. Angew. Chem. Int. Ed. Engl. 62, e202300867 (2023).

Article  PubMed  Google Scholar 

Hofmeister, F. Zur lehre von der wirkung der salze. Arch. Exp. Pathol. Pharmakol. 24, 247–260 (1888).

Article  Google Scholar 

Gibb, B. C. Supramolecular assembly and binding in aqueous solution: useful tips regarding the Hofmeister and hydrophobic effects. Isr. J. Chem. 51, 798–806 (2011).

Article  CAS  Google Scholar 

Kunz, W., Lo Nostro, P. & Ninham, B. W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. https://doi.org/10.1016/j.cocis.2004.05.004 (2004).

Article  Google Scholar 

Jungwirth, P. & Cremer, P. S. Beyond Hofmeister. Nat. Chem. 6, 261–263 (2014).

Article  CAS  PubMed  Google Scholar 

Carnegie, R. S., Gibb, C. L. D. & Gibb, B. C. Anion complexation and the Hofmeister effect. Angew. Chem. Int. Ed. Engl. 53, 11498–11500 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pike, S. J., Hutchinson, J. J. & Hunter, C. A. H-Bond acceptor parameters for anions. J. Am. Chem. Soc. 139, 6700–6706 (2017).

Article  CAS  PubMed  Google Scholar 

Rembert, K. B., Okur, H. I., Hilty, C. & Cremer, P. S. An NH moiety is not required for anion binding to amides in aqueous solution. Langmuir 31, 3459–3464 (2015).

Article  CAS  PubMed  Google Scholar 

Jordan, J. H., Gibb, C. L. D., Wishard, A., Pham, T. & Gibb, B. C. Ion–hydrocarbon and/or ion–ion interactions: direct and reverse Hofmeister effects in a synthetic host. J. Am. Chem. Soc. 140, 4092–4099 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim, J. Y. C., Bunchuay, T. & Beer, P. D. Strong and selective halide anion binding by neutral halogen-bonding [2]rotaxanes in wet organic solvents. Chem. Eur. J. 23, 4700–4707 (2017).

Article  CAS  PubMed  Google Scholar 

Yao, W., Wang, K., Wu, A., Reed, W. F. & Gibb, B. C. Anion binding to ubiquitin and its relevance to the Hofmeister effects. Chem. Sci. 12, 320–330 (2021).

Article  CAS  Google Scholar 

Docker, A. et al. Anti-Hofmeister anion selectivity via a mechanical bond effect in neutral halogen-bonding [2]rotaxanes. Angew. Chem. Int. Ed. Engl. 61, e202214523 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruns, C. J. & Stoddart, J. F. in The Nature of the Mechanical Bond 1–54 (Wiley, 2016).

Wilmore, J. T. & Beer, P. D. Exploiting the mechanical bond effect for enhanced molecular recognition and sensing. Adv. Mater. https://doi.org/10.1002/adma.202309098 (2024).

Giles, M. D., Liu, S., Emanuel, R. L., Gibb, B. C. & Grayson, S. M. Dendronized supramolecular nanocapsules: pH independent, water-soluble, deep-cavity cavitands assemble via the hydrophobic effect. J. Am. Chem. Soc. 130, 14430–14

Comments (0)

No login
gif